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Report D-920243-18 

Inves t iga t ion  of C o l l i s i o n  Probabi l i ty  of Electrons and 

Ions with Alkali  Metal Atoms 

Semiannual Progress Report - April  22, 1965, t o  October 21, 1965 

Contract NAS3 -4171 

Summary 

. This repor t  contains a summary of t h e  experimental research inves t iga t ions  
conducted at the  United Aircraf t  Research Laboratories t o  determine the  c o l l i s i o n  
p r o b a b i l i t i e s  of e lec t rons  and cesium ions  with cesium atoms during t h e  t h i r d  s i x -  
month period from Apr i l  22, 1965, through October 21, 1965, under Contract NAS3-4171. 

I n  the  first year of t he  contract ,  t h e  c o l l i s i o n  probabi l i ty  of e lec t rons  
with cesium atoms was determined over an energy range from 0.2 t o  0.6 eV by measur- 
ing the  t ranspor t  p roper t ies  of t h e  cesium plasma ex i s t ing  i n  the  pos i t ive  column 
of a cesium arc discharge with e l e c t r o s t a t i c  probe and rf conductivity c o i l  diagnos- 
t i c  techniques.  
ously obtained by beam techniques i n  a modified Ramsauer cross-sect ion expr iment  
under Contract NASr-112 were analyzed t o  determine low energy cesium ion mobi l i t i es ,  
and f u r t h e r  inves t iga t ions  of t h e  low energy cesium ion-cesium atom c o l l i s i o n  cross  
sec t ions  were made i n  an e f f o r t  t o  extend t h e  energy range of these  measurements. 
I n  t h e  course of these  invest igat ions,  ion beams with energies  as low as  0.058 eV 
were detected successful ly .  The r e su l t s  of t h e  ion  mobil i ty  ana lys i s  were reported 
at  t h e  IEEE Thermionic Conversion Spec ia l i s t  Conference held i n  Cleveland, Ohio, on 
October 26 through 28, 1964, and the  over-all  results of both t h e  electron-cesium 
atom and t h e  cesium ion-cesium atom co l l i s ion  probabi l i ty  measurements were reported 
i n  two papers presented a t  t he  Fourth In te rna t iona l  Conference on the  Physics of 
Elec t ronic  and Atomic Col l i s ions  held i n  Quebec, Canada, on August 2 through 6, 1965. 

The t o t a l  cesium ion-cesium atom c o l l i s i o n  probabi l i ty  da ta  previ-  

I n  t h i s  current  report  period design and construct ion has been i n i t i a t e d  
on a low energy e l ec t ron  beam experimental apparatus s imi l a r  i n  concept t o  the  modi- 
f i e d  Ramsauer system employed i n  the  cesium ion-cesium atom cross-section measure- 
ments. This system w i l l  be used t o  measure t h e  t o t a i  c o l l i s i o n  cross  sec t ion  of 
e l ec t rons  in t e rac t ing  with cesium atoms over an energy range from 0.5 t o  2.5 eV. 
The most c r i t i c a l  port ion of t h i s  experiment, t he  design of which has been completed, 
is t h e  developnent of a region f r e e  of s t r a y  magnetic f i e l d s  and t h e  generation of 
uniform magnetic f i e l d s  with i n t e n s i t i e s  of 0.1 gauss f o r  energy ana lys i s  of t he  
e l ec t ron  beam. 
a s c a t t e r i n g  chamber t o  reach equilibrium a f t e r  a temperature change occurs i n  the  
cesium rese rvo i r  have been made with a surface ion iza t ion  gauge de tec tor .  An analy- 
sis has been conducted t o  determine the e f f e c t  of using a 4-6-12 type in t e rac t ion  

Measurements of t h e  time required f o r  t h e  neu t r a l  cesium densi ty  i n  
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I p o t e n t i a l  r a t h e r  than only an inverse fourth power p o t e n t i a l  t o  determine the mag- 
nitude of the  contr ibut ion of e l a s t i c  scat ter ing events t o  the  measured t o t a l  ce- 
sium ion-cesium atom c o l l i s i o n  cross section. The avai lable  ex-primental e lectron-  
atom and electron-molecule d i f f e r e n t i a l  sca t te r ing  cross sec t ions  reported i n  t h e  
l i t e r a t u r e  have been analyzed i n  an e f f o r t  t o  determine the magnitude of t h e  d i f -  
ference tha t  can e x i s t  between the t o t a l  and momentum t r a n s f e r  cross sect ions due 
t o  anisotropic  s c a t t e r i n g  e f f e c t s .  

I 
I 

~ 

A knowledge of both the co l l i s ion  probabi l i ty  of e lec t rons  and cesium 
ions w i t h  cesium atoms i s  of extreme importance i n  t h e  ana lys i s  of t h e  neut ra l iza-  
t ion plasma exis t ing  i n  the ignited-mode thermionic converter. 
by t h e  many t h e o r e t i c a l  analyses t h a t  are present ly  being reported i n  the  l i t e r a -  
ture which use t h i s  information. A knowledge of these cross  sec t ions  is  a l s o  ap- 
p l icable  i n  t h e  analyses of devices other than t h e  converter which employ cesium 
vapor i n  an ionized state. 

This is i l l u s t r a t e d  
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k 

D -920243 -18 

ELECTRON-CESIUM ATOM COLLISION PROBABILITY MEAS-TS 

I n t  roduc t ion 

The cross  sec t ion  f o r  electron-cesium atom momentum t r a n s f e r  co l l i s ions ,  
which plays a dominant r o l e  i n  t h e  determination of the  t ranspor t  p roper t ies  of 
s l i g h t l y  and p a r t i a l l y  ionized cesium plasmas, has been determined i n  the first 
year of t h i s  contract  by measuring t h e  t ranspor t  p roper t ies  of t h e  cesium plasma 
t h a t  e x i s t  i n  t h e  pos i t ive  column of a cesium a rc  discharge. I n  t h i s  measurement, 
which is e s s e n t i a l l y  a swarm-type experiment, t h e  ve loc i ty  dependence of t he  
electron-cesium atom momentum t r a n s f e r  c o l l i s i o n  cross  sec t ion  w a s  determined from 
t h e  measured averaged e f f ec t ive  co l l i s ion  frequency by numerically in tegra t ing  t h e  
e l ec t ron  ve loc i ty  d i s t r i b u t i o n  over the ve loc i ty  dependence of the  cross  sec t ion .  
A s  out l ined i n  d e t a i l  i n  Appendix I, which is  a prepr in t  of t h e  electron-cesium 
atom c o l l i s i o n  probabi l i ty  paper presented at t h e  Fourth In t e rna t iona l  Conference 
on t h e  Physics of Elec t ronic  and Atomic Col l i s ions  held i n  Quebec, Canada, on 
August 2 through 6, 1965, it i s  possible by numerical techniques t o  determine t h e  
general  behavior of t h e  ve loc i ty  dependence of t h e  cross  sec t ion  but  not the  f i n e  
s t ruc tu re  associated with t h i s  veloci ty  dependence. 
made over t h e  energy range f rm  0.2 t o  0.6 e V ,  f u r t h e r  cross-sect ion information 
obtained by beam techniques i n  the  region above 0.5 eV would serve as a na tu ra l  
complement t o  these  e a r l i e r  measurements and would a l s o  increase t h e  range over 
which the  ve loc i ty  dependence of the  cross sec t ion  is known. Brode,l over t h i r t y  
years  ago using beam techniques, measured t h e  t o t a l  electron-cesium atom c o l l i s i o n  
c ross  sec t ion  down t o  energies of 0.6 eV.  However, it i s  not e n t i r e l y  c l e a r  t h a t  
contact p o t e n t i a l  e f f e c t s  which can produce l a rge  uncer ta in t ies  i n  t h e  determina- 
t i o n  of t h e  energy of t h e  e lec t ron  beam were eliminated i n  these  measurements. It 
has been conclusively s h w n  i n  low energy cesium ion-cesium atom measurements t h a t  
as much as 2.5 e V  uncertainty can ex i s t  i n  t h e  determination of ion beam energies  
i f  contact  po ten t i a l  e f f e c t s  a r e  not taken i n t o  account .2 

Since these  measurements were 

Therefore, t h e  object of t h i s  experiment i s  t o  measure t h e  t o t a l  e lec t ron-  
cesium atom cross  sec t ion  over an  energy range from 0.5 t o  2.5 eV i n  a system which 
employs an electroformed c o l l i s i o n  chamber s imi l a r  i n  design t o  those used i n  t h e  
low energy cesium ion-cesium atom measurements t o  e l iminate  unce r t a in t i e s  i n  the  
determination of t he  e lec t ron  beam energy. 

Description of Experiment 

I n  t h i s  experiment which i s  similar i n  nature t o  th2  e a r l i e r  measurements 
of Brode,’ t h e  energy of t h e  electron beam i s  determined by measuring the  radius  of 
curvature of t h e  e l ec t ron  beam i n  a magnetic f i e l d  of known in t ens i ty .  
nique is  similar t o  t h e  technique used i n  t h e  measurements of low energy cesium 
ion-cesium atom in terac t ions .  
t h e  uncer ta in ty  i n  t h e  energy determination of t he  e lec t ron  beam produced by 

This tech-  

I n  contrast  t o  t h e  e a r l i e r  measurements of Brode, 

- 3 -  
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contact po ten t i a l  e f f e c t s  is  eliminated i n  these measurements by employing an e l ec -  
troformed c o l l i s i o n  chamber. A s  i n  t he  ion measurements a sca t t e r ing  event which 
produces a def lec t ion  of t he  e lec t ron  beam which i s  g r e a t e r  than t h e  minimum resolu-  
t i o n  of t he  sca t t e r ing  chamber w i l l  be counted as a c o l l i s i o n a l  event.  The cross  
sec t ion  is determined by measuring t h e  a t tenuat ion  of t he  e l ec t ron  beam produced by 
increases  i n  neu t r a l  cesium pressure i n  t he  c o l l i s i o n  chamber. This a t tenuat ion  
can be given by 

-p P x I = Ioe o t 

where 

I is t h e  e l ec t ron  beam current ex i t i ng  the  c o l l i s i o n  chamber f o r  a 
f i n i t e  pressure i n  t h e  chamber. 

Io i s  the  e lec t ron  beam current ex i t i ng  t h e  c o l l i s i o n  chamber for 
zero pressure i n  t h e  chamber. 

po is t h e  pressure i n  the  co l l i s ion  chamber reduced t o  273OK. 

Pt is  t h e  number of co l l i s ions  per cm of path per m of pressure.  

x i s  the path length of the  e lec t ron  beam through the  chamber. 

The t o t a l  c o l l i s i o n  cross  sect ion i s  determined by gradual ly  increasing 
t h e  cesium pressure i n  t h e  c o l l i s i o n  chamber and measuring t h e  a t tenuat ion  of the  
e l ec t ron  beam i n t e n s i t y  produced by the increase i n  chamber pressure.  A s  Eq. 1 
ind ica t e s ,  only a r e l a t i v e  measurement of t h e  i n t e n s i t y  of t h e  e l ec t ron  beam is 
required t o  determine the  magnitude of t h e  cross  sec t ion .  
t h e  e l ec t rons  i n  t h e  beam have su f f i c i en t  energy t o  be l o s t  f rom t h e  beam by in -  
elastic,  exci ta t ion-type co l l i s ions .  
urement t he re  is  no way t o  determine whether o r  not t h e  e l ec t ron  sca t t e r ing  is  
t r u l y  isotropic. .  

A t  energies above 1.4 eV 

Lastly,  it should be noted t h a t  i n  t h i s  meas- 

Method of Determinim Electron Beam Enerav 

The e l ec t ron  beam energy i s  determined uniquely i n  these  measurements 
from t h e  radius  of curvature determined by the  geometry of t h e  electroformed col -  
l i s i o n  chamber and t h e  magnitude of the applied magnetic f i e l d .  Since t h e  c o l l i -  
s ion  chamber slits have a f i n i t e  width, t he  e lec t ron  beam focused through the co l -  
l i s i o n  chamber has a f i n i t e  energy width which i s  determined purely by the  geometry 
of t h e  c o l l i s i o n  chamber. Since it has been shown i n  the cesium ion-cesium atom 
cross-sec t ion  measurements t h a t  the  ion beam i n t e n s i t y  focused through the  chamber 
i s  e s s e n t i a l l y  space-charge l imited,  it would be expected t h a t  an increase propor- 
t i o n a l  t o  the  square root  of the electron-to-ion mass r a t i o ,  which i s  500 fo r  the 
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case of cesium, could be focused through the  c o l l i s i o n  chamber. 
r e n t  l e v e l s  avai lable  the width of the  c o l l i s i o n  chamber s l i t s  can be reduced, 
thereby af fec t ing  an improvement i n  the energy resolut ion of the system. 

With higher cur-  

I n  a Ramsauer-type experiment the length of the path of the  charged par- 
t i c l e  bean i n  the c o l l i s i o n  chamber required t o  de tec t  a s c a t t e r i n g  event i s  deter-  
mined by the  magnitude of the cross section and the pressure of the sca t te r ing  gas 
i n  the  c o l l i s i o n  chamber. I n  t h i s  type of experiment the  neut ra l  pressure i n  the 
c o l l i s i o n  chamber i s  maintained below the t r a n s i t i o n  regime between f r e e  molecular 
and viscous flow, so t h a t  the loss  r a t e  of n e u t r a l  atoms from the entrance and e x i t  
s l i t s  of the chamber i s  minimized. On the  b a s i s  of the  pressure l imi ta t ions  and 
the estimated magnitude of the electron-cesium atom t o t a l  c o l l i s i o n  cross section, 
it was found t h a t  the c o l l i s i o n  chamber for  t h e  electron-cesium atom measurements 
could not  be reduced i n  s i z e  from the  one used i n  the  cesium ion-cesium atom meas- 
urements, even though a reduction i n  the  radius  of the  e lec t ron  beam t r a j e c t o r y  
would be advantageous from the  standpoint of the requirements of the magnetic i n -  
t e n s i t y  employed f o r  energy select ion.  Therefore, due t o  the  long beam path length 
r e s t r i c t i o n ,  the required energy select ion magnetic f ie lds  used i n  these measure- 
ments must be s ign i f icant ly  lower i n  in tens i ty  than those used i n  the ion cross-  
sect ion measurements. 

Generation of Low-Intensity Magnetic Fields 

A t  e lec t ron  beam energies of 0.5 eV,  magnetic f i e l d  i n t e n s i t i e s  required 
f o r  energy se lec t ion  a r e  0.1 gauss. Since the e a r t h ' s  magnetic f i e l d  i n t e n s i t y  i s  
0.6 gauss, the  generation and detection of f i e l d s  of t h i s  i n t e n s i t y  presents a 
considerable problem, espec ia l ly  i n  an environment i n  which the e a r t h ' s  f i e l d  i s  
perturbed s igni f icant ly  by the presence of s t r u c t u r a l  steel and by heavy laboratory 
equipment. I n  the  type of energy-selection system employed i n  t h i s  experiment, the  
uncertainty i n  the  determination of electron beam energy i s  d i r e c t l y  proportional 
t o  the  square of the  uncertainty i n  the  determination of the magnetic f i e l d  in ten-  
s i t y .  On t h i s  basis the accuracy t o  which the  magnetic f i e l d  must be generated 
and measured i s  10-3 gauss for energy-selection f i e l d  i n t e n s i t i e s  of 0.1 gauss. 
Surveys made of the  magnetic f i e l d  var ia t ions ex is t ing  i n  the plane of the e x i s t i n g  
cesium ion-cesium atom cross-section measurements a r e  shown i n  Figs .  1 t o  3 f o r  a 
region which i s  t y p i c a l  i n  s i z e  t o  the one required f o r  the electron-cesium atom 
measurements. I n  Fig. 1 a r e l a t i v e  measurement of the var ia t ion  i n  the v e r t i c a l  
component of the background magnetic f i e l d  i s  plot ted as a function of posit ion.  
P l o t t e d  i n  Figs. 2 and 3 are the  var ia t ions i n  the horizontal  components of the 
background f i e l d  as a function of position. It should be noted t h a t  the  background 
f i e l d  i s  composed of contr ibut ions from the e a r t h ' s  magnetic f i e l d  as well as con- 
t r i b u t i o n s  from various e l e c t r i c a l  sources i n  the region adjacent t o  the experiment. 
A s  can be seen from the f i e l d  p lo ts  i n  Figs.  1 t o  3, a maximum var ia t ion  of approxi- 
mately 17 x 10-3 gauss occurs over the experimental region. 
m a x i m u m  i n t e n s i t y  of the background magnetic f i e l d  was on the order of 0.6 gauss. 

I n  the same region the 
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On the  bas i s  of the magnetic f i e l d  surveys, the major problem i n  achieving 
desired accuracies i s  the  nonuniformity i n  the magnetic f i e l d  t h a t  e x i s t s  i n  the  
measurement volume. To eliminate e f f ec t s  of rap id  var ia t ions  i n  f i e l d  i n t e n s i t y ,  
a magnetic sh ie ld  w i l l  be posit ioned outside the  vacuum system around the  experi-  
mental volume. The purpose of the shield i s  t o  reduce the  magnitude of t he  var ia -  
t i ons  i n  the  background f i e l d  in t ens i ty .  The sh ie ld  w i l l  not, however, be used t o  
completely cancel the e n t i r e  ambient i n t ens i ty  of t h e  background f i e l d .  A th ree-  
dimensional Helmholtz c o i l  configuration placed outs ide the  s h i e l d  w i l l  be used t o  
cancel t h e  ambient background f i e l d  over approximately a 4 f t 3  volume. Thus with 
the  ex terna l  Helmholtz c o i l s  used i n  conjunction with the magnetic sh ie ld ,  the  
volume within the  sh i e ld  can be made e s sen t i a l ly  f r e e  of s ign i f i can t  magnetic f i e l d  
e f f e c t s .  
sh i e ld  but  outs ide the vacuum system. The s h i e l d  system i s  designed so  t h a t  sa tu-  
r a t i o n  of t he  s h i e l d  due t o  the  magnetic f i e l d  produced by t h e  energy-selection 
f i e l d  occurs a t  operating f i e l d  i n t e n s i t i e s  where the  17 x gauss va r i a t ion  i n  
the  background f i e l d  i s  no longer s ign i f icant .  To insure t h a t  r e s idua l  f i e l d s  do 
not  bu i ld  up within the  sh i e ld  and other associated p a r t s  of the  apparatus, the 
magnetic f i e l d  i n t e n s i t y  within the  system w i l l  be measured continuously with a 
three-dimensional Hall-type probe which has been ca l ib ra t ed  i n  a known f i e l d  t o  
the  des i red  one per cent accuracy a t  0.1 gauss. 

The energy-selection f i e l d  w i l l  be generated by c o i l s  placed in s ide  the  

To insure  minimum perturbations from the vacuum tank which houses the  ex- 
periment, a l l  welds and wall areas  axe being loca ted  a m a x i m u m  dis tance from the  
c r i t i c a l  regions of the  experiment, and only highly nonmagnetic mater ia l s ,  such as  
copper and 3 l O  s t a i n l e s s  steel, a r e  being used i n  the  c r i t i c a l  portions of the  sys- 
tem. 

Analvsis of Electron-Atom To ta l  Col l is ion Cross Sections 

A fundamental c o l l i s i o n a l  parameter r e l a t e d  t o  the  bas ic  propert ies  of an 
atom i s  t h e  d i f f e r e n t i a l  cross  sec t ion  f o r  e l a s t i c  s ca t t e r ing ,  I( 8, v ), which i s  
a funct ion of both sca t t e r ing  angle, 8 ,  and e lec t ron  ve loc i ty ,  v . 
physical systems it i s  the  i n t e g r a l  of I(  8 , v ) over sca t t e r ing  angle t h a t  con- 
t r i b u t e s  t o  the  over -a l l  observable e f f ec t  of t h e  pa r t i cu la r  c o l l i s i o n a l  process 
under inves t iga t ion .  For example, i n  the t o t a l  c o l l i s i o n  cross-sect ion measurements 
described i n  t h i s  repor t ,  the  d i f f e r e n t i a l  s ca t t e r ing  cross  sect ion i s  simply i n -  
t eg ra t ed  over a l l  angles, s ince any co l l i s ion  r e su l t i ng  i n  an angular def lec t ion  
g rea t e r  than the  angular resolut ion of t he  system i s  counted as  a c o l l i s i o n a l  
event.  
average c ross  sec t ion  which i s  observed experimentally i s  given by3 

I n  ac tua l  

With t h i s  technique a l l  angular s ca t t e r ing  events a r e  weighed equally.  The 

where &r i s  the  t o t a l  e l a s t i c  sca t te r ing  cross  sect ion.  
from t h e  f a c t  t h a t  t he  sca t t e r ing  has been assumed i so t rop ic  i n  the plane 

The 2 7r fac tor  a r i s e s  
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perpendicular t o  the  o r ig ina l  direct ion of e lec t ron  motion so that in t eg ra t ion  over 
angle '(e ) i n  th i s  plane can be performed immediately. On the other  hand, i n  many 
p r a c t i c a l  appl icat ions,  such as thermionic energy conversion, the prec ise  change i n  
e lec t ron  ve loc i ty  or momentum i n  a specific d i r ec t ion  i s  the  important aspect of a 
c o l l i s i o n .  I n  t h i s  case the  d i f f e r e n t i a l  s c a t t e r i n g  c ross  sect ion i s  weighed angu- 
l a r l y  i n  order t o  r e f l e c t  t h i s  e f f e c t ,  and the  momentum t r a n s f e r  c o l l i s i o n  cross  
sect ion r e s u l t s .  

I n  Eq. 3 the (1 - cos 8 ) i s  a weighing f ac to r  related t o  the f r a c t i o n a l  change of 
e lec t ron  ve loc i ty  or momentum. Clear ly  t h i s  f ac to r  has the  e f f e c t  of emphasizing 
l a rge  angle c o l l i s i o n s  while placing very l i t t l e  emphasis on small angle sca t t e r ing .  
For the  t r i v i a l  case where the  d i f f e r e n t i a l  s c a t t e r i n g  c ross  sec t ion  i s  independent 
of angle,  it can be seen t h a t  t he  t o t a l  e l a s t i c  and momentum t r a n s f e r  c ross  sec t ions  
are i d e n t i c a l .  I n  almost any ac tua l  s i t ua t ion  the d i f f e r e n t i a l  c ross  sec t ion  w i l l  
depend on angle, and therefore ,  it i s  of i n t e r e s t  t o  es t imate  the  probable d i f f e r -  
ence t h a t  w i l l  e x i s t  between +(.) and &M(v). 

The angular dependence of e lectron s c a t t e r i n g  i n  a va r i e ty  of gases was 
f i r s t  inves t iga ted  over t h i r t y  years  ago by Ransauer and K ~ l l a t h . ~  These measure- 
ments were made on r a r e  gases,  mercury,and severa l  molecular species ,  f o r  e lec t ron  
energies  down t o  1.0 eV. The most s ign i f i can t  r e s u l t  of t h i s  work was the con- 
c lus ion  t h a t  the e lec t ron  s c a t t e r i n g  has a pronounced angular dependence with dis- 
t i n c t  maxima and minima exhibi ted i n  some cases as a r e s u l t  of quantum e f f e c t s .  
Unfortunately, l i t t l e  addi t iona l  work has been done along t h i s  l i n e ,  and t o  da t e  
no d i f f e r e n t i a l  s ca t t e r ing  da ta  e x i s t s  f o r  the  a l k a l i s  or  f o r  m y  atomic species  
f o r  energies  less than 1.0 eV. 
determine a reasonable es t imate  of the e f f e c t  that  the  angular dependence of e l ec -  
t ron  s c a t t e r i n g  might have on the  two averages, &r and &M. 
I( 8 ) d a t a  (summarized i n  R e f .  5 )  for  neon corresponding t o  energies between 1.0 
and 4.0 eV and f o r  carbon dioxide corresponding t o  energies  between 1.0 and 2.0 eV 
are shown i n  Figs .  4 and 5 .  
i n d i c a t e s  v iv id ly  t h a t  e lec t ron  sca t te r ing  i s  d e f i n i t e l y  dependent on angle and 
tha t  t h e  angular dependence can change subs t an t i a l ly  over a small energy range. 
Using Eqs. 2 and 3, the  t o t a l  e l a s t i c  and momentum t r ans fe r  cross  sec t ions  have 
been determined from the  da ta  of Fig. 4. 
t i o n  are shown i n  Fig. 6. I n  the  case of neon it i s  seen t h a t  % i s  always 15 t o  
25 per cent  higher than QM over the  energy range covered. However, f o r  the  lower 
energies  i n  Cog, as shown i n  Fig.  7, la rge  angle sca t t e r ing  dominates, and conse- 
quently,  Q,M is  approximately 20 per cent l a r g e r  than &r. A s  the  energy increases ,  
t h i s  t r e n d  reverses  i t s e l f  u n t i l  a t  approximately 2.0 eV, Qr i s  15  per cent  l a r g e r  
than QM. 
v a r i e t y  of hypothet ical  I( 8 , v ) functions i n  an attempt t o  determine the  sens i -  
t i v i t y  of + and QM t o  va r i a t ions  i n  I( e ) .  Of s ignif icance i s  the  f a c t  t h a t  even 
though t h e  d i f f e r e n t i a l  s ca t t e r ing  cross sec t ion  may depend s t rongly on angle, the 
i n t e g r a t i o n  process (Eqs. 2 and 3) i s  very e f f ec t ive  i n  minimizing the  e f f e c t .  

Nevertheless, the ava i lab le  data c m  be used t o  

A s  an i l l u s t r a t i o n ,  

This data, which i s  typ ica l  of t he  gases inves t iga ted ,  

The r e s u l t s  of t h i s  numerical ca lcu la-  

Numerical experimentation of t h i s  type has a l s o  been ca r r i ed  out f o r  a 
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i .  

After  in tegra t ing  several  angular t r i a l  functions f o r  I(  8 , v ) based on typ ica l  
t rends i n  ava i lab le  da ta ,  it was determined t h a t  f o r  the  cases t r ea t ed  near 1.0 eV, 
the  difference between Qr and QM was l e s s  than 50 per cent .  

A s  has been mentioned, no d i f f e r e n t i a l  s c a t t e r i n g  da ta  e x i s t s  f o r  cesium. 
I n  f a c t ,  Brode's' data represents  the  only ava i lab le  t o t a l  electron-atom c o l l i s i o n  
cross-sect ion measurements f o r  cesium i n  any energy range. The electron-cesium 
atom momentum t r ans fe r  cross  sect ions determined i n  the  f i r s t  year of t h i s  cont rac t  
(Appendix I) from the  t ranspor t  properties of a cesium arc  plasma a r e  not i n  com- 
p l e t e  agreement with extrapolat ions of Brode's t o t a l  electron-atom cross-sect ion 
measurements. 
f o r  cesium near 1.0 eV. 
s c a t t e r i n g  cross  sec t ions  f o r  cesium, the QT was found t o  be 50 t o  100 per cent  
l a r g e r  than QM near 1.0 eV. 
da ta  ava i lab le  f o r  other  gases, which was described i n  the  previous paragraph. 
Therefore, even though the  t o t a l  and momentum t r a n s f e r  e l a s t i c  s ca t t e r ing  cross  
sec t ions  f o r  cesium would be expected t o  have s imi la r  q u a l i t a t i v e  and quan t i t a t ive  
behavior i n  the  v i c i n i t y  of 1.0 eV, preliminary ana lys i s  of the ava i lab le  d i f f e ren -  
t i a l  s c a t t e r i n g  da ta  for  various gases, the  ava i lab le  Qr and 
and the  t h e o r e t i c a l  predict ions of QJJ and &M f o r  cesium would seem t o  ind ica t e  t h a t  
a d i f fe rence  i n  magnitude between + and $ would be expected near 1.0 e V  and tha t  
t h i s  d i f fe rence  might be on the  order of 50 t o  75 per cent.  

The lack of agreement could occur i f  Qr and $M 2 f f e r e d  appreciably 
I n  two recent  t h e o r e t i c a l  ca lcu la t ions  J7 of the  e lec t ron  

This r e s u l t  seems t o  be cons is ten t  when compared with 

da ta  f o r  cesium, 
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Outline of Research for the Next Six-Month Period 

1. Construction and assembly of the electron-cesium atom beam experiment will be 
completed. 

2. All components of the system w i l l  be calibrated. This includes the magnetic 
field energy-selection system and the neutral cesium pressure measuring system. 

3. Measurements w i l l  be made of the total electron-cesium atom collision cross 
section over the energy range from 0.5 to 2.5 eV. 

- 9 -  
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CESIUM ION-CESIUM ATOM COLLISION PROBABILITY MEASUREMEXTS 

Introduction 

I n  diffusion-dominated plasmas the loss r a t e  of ions from the plasma i s  
determined by t h e i r  mobility. Accurately predicting the l o s s  r a t e  of ions from the 
ignited-mode cesium plasma exis t ing  i n  the  thermionic converter i s  one of the  i m -  
por tant  terms required i n  the calculat ion of the energy balance equations f o r  the  
system. I n  the  previous periods cesium ion-cesium atom t o t a l  c o l l i s i o n  cross  sec- 
t ions  were measured over an energy range from 10.0 e V  down t o  energies near 0.1 eV. 
The r e s u l t s  of these invest igat ions were reported a t  the  Fourth In te rna t iona l  Con- 
ference on the Physics of Electronic  and Atomic Coll is ions held i n  Quebec, Canada, 
on August 2 through 6, 1965. 
ber  was employed t o  eliminate contact po ten t ia l  e f f e c t s  so t h a t  the energy of the  
ion beam could be determined uniquely. Ion beams with energies as low as 0.058 eV 
were detected successfully with t h i s  system. To determine the  energy dependence 
and magnitude of the diffusion cross  section required f o r  mobili ty calculat ions,  
the  charge exchange cross  sect ion was determined from the  measured t o t a l  c o l l i s i o n  
cross-section information by calculat ing the  t o t a l  contr ibut ion of e l a s t i c  s c a t t e r -  
ing events t o  the  measured t o t a l  co l l i s ion  cross  section. The e l a s t i c  s c a t t e r i n g  
cross  sect ion was calculated on a completely c l a s s i c a l  basis as out l ined i n  R e f .  2, 
assuming the p o t e n t i a l  f o r  the in te rac t ion  was purely an inverse four th  power de- 
pendence or i n  e f f e c t  only due t o  dipole in te rac t ions .  
experimentally by Menendez and Datz8 i n  d i f f e r e n t i a l  s c a t t e r i n g  measurements of 
cesium ions  on argon, krypton, and nitrogen t h a t  rainbow e f f e c t s  occur a t  low ener- 
g i e s  and t h a t  it i s  important t o  include even a t  low energies a 4-6-12 type poten- 
t i a l  of i n t e r a c t i o n  t o  accurately predict  the  magnitude of the  e l a s t i c  s c a t t e r i n g  
cross  sec-cion. 

I n  these measurements an electroformed c o l l i s i o n  cham- 

It has been recent ly  shown 

One of the  l a r g e  uncertaint ies  t h a t  has ex is ted  i n  t h e  cesium ion-cesium 
atom cross-section measurements which w i l l  a l s o  be a problem i n  t h e  low-energy 
electron-cesium atom measurements i s  the determination of t r u e  cesium density i n  
t h e  c o l l i s i o n  chamber. It has been reported by Nolan and Phelps9 and by Sheldon 
and Manistal0. that  an appreciable length of time i s  required f o r  t h e  cesium pres- 
sure  i n  the system t o  come i n t o  equilibrium once a pressure change i s  produced by 
changing the temperature of the cesium reservoi r .  

Therefore, i n  t h i s  repor t  period a re-examination of cesium pressure de- 
termination techniques was made i n  an e f f o r t  t o  eliminate the  problems associated 
with determining an absolute cesium pressure i n  the sca t te r ing  chamber, and the  
e f f e c t s  of including a 4-6-12 potent ia l  on the determination of the cesium e l a s t i c  
s c a t t e r i n g  cross  sect ion were evaluated. 

- 10 - 
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Cesium Pressure Determinations 

I n  e a r l i e r  attempts t o  determine the  time required f o r  a pressure change 
i n  the  cesium rese rvo i r  system t o  come i n t o  equilibrium i n  t h e  sca t t e r ing  chamber, 
the  change i n  a t tenuated ion  beam current passing through the  c o l l i s i o n  chamber 
was measured as  a function of t i m e  f o r  a f ixed  cesium rese rvo i r  system temperature. 
I n  these measurements the  temperature of the  cesium rese rvo i r  was adjusted so  t h a t  
there  was s u f f i c i e n t  pressure i n  the  co l l i s ion  chamber to produce an at tenuat ion 
of the  ion  beam. The va r i a t ion  i n  ion  beam at tenuat ion was then measured as a 
function of t i m e  a f t e r  a temperature change occurred i n  the  reservoi r .  
t i o n  of t h e  ion  beam under these  conditions was in t e rp re t ed  as being produced by 
changes i n  the  neu t r a l  densi ty  of cesium atoms i n  t h e  c o l l i s i o n  chamber. 
technique an estimate was obtained of the t i m e  required f o r  t h e  pressure i n  the  
c o l l i s i o n  chamber t o  equ i l ib ra t e .  On the bas i s  of these measurements, it was con- 
cluded t h a t  t h e  t i m e  required f o r  the  cesium pressure t o  equ i l ib ra t e  was sho r t  i n  
comparison t o  the  t i m e  i n  which the  measurements were obtained. 

Any var ia -  

By t h i s  

Observations of t h i s  phenomenon made by other  inves t iga tors ,  f o r  example, 
Nolan and Phelpsg and Sheldon and Manista,” i nd ica t e  t h a t  t h e  time f o r  t he  cesium 
densi ty  t o  equ i l ib ra t e  i s  on the  order of hours r a t h e r  than t h e  much shor te r  t i m e  
constants  i n fe r r ed  on the  basis of ion  beam a t tenuat ion  measurements. I n  an a t -  
tempt t o  resolve t h i s  d i f fe rence  and also t o  increase  the  accuracy of the  cross-  
sec t ion  measurements, a surface ionizat ion gauge de tec tor  has been used t o  measure 
the  n e u t r a l  e f f l u x  of cesium from a cesium reservoi r  system which was designed so 
t h a t  t h e  chamber loca ted  d i r e c t l y  over t he  r e se rvo i r  could be maintained a t  a tem- 
perature  which was s ign i f i can t ly  ho t t e r  than the  temperature of the  cesium reser- 
voi r .  This type of configuration was used i n  the  measurements because it most 
c lose ly  approximated the  s i t u a t i o n  ex is t ing  i n  the  ac tua l  cross-sect ion measurements. 
The cesium was introduced i n t o  t h e  reservoir  i n  a manner i n  which only pure cesium 
with no foreign mater ia ls ,  such as glass  from the  cesium ampule, was present i n  
the  r e se rvo i r .  The surface ion iza t ion  gauge de tec tor  was a 0.006-in. diameter 
tungsten fi lament which was outgassed for  several  days p r io r  t o  operation t o  reduce 
t h e  l e v e l  of emission of impurity ions from the  tungsten surface.  I n  the  measure- 
ment of the  neu t r a l  e f f l u x  f r m  a 0.040-in. diameter hole loca ted  i n  the  upper cham- 
ber  of t h e  r e se rvo i r  system, the  tungsten fi lament was operated a t  approximately 
1 9 5 O O C .  
Of t i m e  f o r  the  system. The ion current measured i s  proportional t o  the  neu t r a l  
efflux of cesium from the 0.040-in. diameter hole.  This e f f l u x  should be propor- 
t i o n a l  t o  t h e  neu t r a l  densi ty  i n  the  upper chamber of t h e  reservoi r .  Therefore, 
by measuring the  number of cesium ions produced by contact  processes on the tung- 
s t e n  surface,  it i s  possible t o  determine the r e l a t i v e  change i n  the  neu t r a l  cesium 
dens i ty  i n  the upper portion of the  cesium reservoi r  system a s  a function of r e se r -  
vo i r  temperature and t i m e .  A s  indicated i n  Fig.  8, the t i m e  required t o  achieve 
r e l a t i v e  temperature s t a b i l i t y  i n  the  system i s  on the  order of three minutes. 
Beyond t h i s  point  approximately one minute i s  required t o  achieve s t a b i l i t y  of the  
n e u t r a l  e f f l u x  of cesium from the  system. Measurements made up t o  times of t h i r t y  
minutes i n d i c a t e ,  as  show i n  Fig.  8, t h a t  no s i g n i f i c a n t  change i n  neut ra l  e f f lux  

Shown i n  Fig. 8 i s  a typ ica l  ion cur ren t  va r i a t ion  measured as  a function 
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occurs a t  the detector ,  which can be in te rpre ted  a s  ind ica t ing  that  no gross change 
i n  neu t r a l  densi ty  occurs i n  the upper portion of the cesium reservoi r .  
measurements the  temperature of the  reservoir  was maintained t o  within approximately 
l0C. Closer cont ro l  of the temperature of the reservoi r  was not  possible  with the 
ex i s t ing  heating system. The re l a t ive ly  rapid,  small va r i a t ion  of ion  current  de- 
t ec t ed  as a function of t i m e  can be a t t r i bu ted  t o  t h i s  e f f e c t .  The important fea-  
t u r e  of t h i s  da ta  i s  t h a t  the  average leve l  of the  ion cur ren t  did not  change with 
t i m e .  
was below the  ambient temperature of the surrounding walls of the vacuum system, 
produced r e s u l t s  which were more typical  of those observed by o ther  inves t iga tors .  
The temperature of the  reservoi r ,  a s  
ten  minutes t o  achieve r e l a t i v e  s t a b i l i t y .  I n  t h i s  case,  however, the ion  cur ren t  
l e v e l  required an addi t iona l  nine minutes t o  achieve s t a b i l i t y .  
tested, it was found t h a t  s ign i f i can t ly  longer times were required t o  achieve ion  
cur ren t  s t a b i l i t y  when t h e  r e se rvo i r  was s ign i f i can t ly  lower i n  temperature than 
the  surrounding p a r t s  of the system and when Signi f icant  amounts of cesium had j u s t  
previously been effused from the reservoir .  By ca re fu l ly  monitoring the  background 
ion  cur ren t  l e v e l  detected i n  the  system a t  a posi t ion t h a t  was a s ign i f i can t  dis- 
tance from the hole i n  the  cesium reservoir ,  i t  was ascer ta ined t h a t  the higher ion  
cur ren ts  detected p r io r  t o  achieving s t a b i l i t y  when cycling the reservoi r  f r a m  a 
high temperature t o  one lower than the  surrounding environment were always accom- 
panied by higher background l eve l s .  Therefore, a very reasonable explanation of 
t h e  long t i m e  dependence required t o  achieve equilibrium densi ty  conditions which 
i s  supported by the  background measurements i s  t h a t  s i g n i f i c a n t  e f f e c t s  due t o  ce- 
sium adsorbed on the  wal ls  of the surrounding system are contr ibut ing t o  t h e  de- 
t ec t ed  i o n  current  leve l .  I n  both the cesium ion-cesium atom and electron-cesium 
atom measurements, this e f f e c t  i s  eliminated by the  l i q u i d  ni t rogen cold t r aps  
which are located i n  c r i t i c a l  regions of the system. 

I n  these 

Cycling the  system down t o  the i n i t i a l  s t a r t i n g  r e se rvo i r  temperature, which 

indicated i n  Fig.  8, required approximately 

I n  a l l  cases 

Repeated cycling of t he  system yielded cons is ten t  r e s u l t s  i n  t h a t  a l l  
pressure l e v e l s  checked achieved s t a b i l i t y  i n  the  ion  cur ren t  l e v e l  i n  times on 
t h e  order  of one minute, whereas cycling t o  the low i n i t i a l  r e se rvo i r  temperature 
always r e s u l t e d  i n  s ign i f i can t ly  longer times t o  achieve equilibrium. To insure  
tha t  the longer times required on recycling t o  the i n i t i a l  reservoi r  temperature 
were not  t r u l y  a hys te res i s  e f f e c t  tha t  would be present i n  a l l  measurements, a 
series of  tests was conducted by f i r s t  increasing the  r e se rvo i r  temperature and 
then by reversing the  d i r ec t ion  of the temperature cycling process. The r e s u l t s  of 
these measurements a r e  shown i n  Fig.  9. I n  a l l  cases the t i m e  required t o  achieve 
s t a b i l i t y  was on the  order of one minute,  and exce l len t  agreement was achieved be- 
tween the measured current  l e v e l s  on the increasing portion of the temperature cy- 
c le  and t h e  decreasing portion of t h e  cycle .  

On the  bas i s  of the r e s u l t s  obtained i n  these t e s t s  t o  date ,  it must be 
concluded t h a t  i f  precautions a r e  taken t o  insure  t h a t  the cesium rese rvo i r  system 
has good high-vacuum q u a l i t i e s  and i s  not  subject  t o  a t tack  by cesium and if the 
e f f e c t s  of wall pumping by the  surrounding environment of the reservoi r  a r e  e l i m i -  
nated by the  proper use of l i q u i d  nitrogen cold traps, the time required t o  achieve 
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an equilibrium neut ra l  cesium densi ty  i n  the  colLision chamber i s  on t h e  order of 
one minute r a t h e r  than t i m e  sca les  which are s igni f icant ly  longer. 

Further measurements using a hot wire detector  are present ly  under way t o  
determine the n e u t r a l  cesium e f f l u x  ra tes  from t h e  e x i t  s l i t  of the a c t u a l  operating 
electroformed c o l l i s i o n  chamber system t o  insure  tha t  the l a r g e r  volume associated 
with t h i s  system does not s ign i f icant ly  a l te r  the t i m e  required t o  achieve n e u t r a l  
cesium densi ty  equilibrium within the chamber. 

Analysis of Elast ic  Scat ter ing Cross Sections 

I n  the analysis  of the t o t a l  c o l l i s i o n  cross-section information, as has 
been previously outlined,2 the diffusion cross  sect ion used i n  the mobili ty calcu- 
l a t i o n s  was determined by ca lcu la t ing  c l a s s i c a l l y  the  e l a s t i c  contr ibut ion t o  the 
measured t o t a l  c o l l i s i o n  cross  sect ion.  By subtract ing t h i s  e l a s t i c  contr ibut ion 
from the  measured t o t a l  c o l l i s i o n  cross sect ion,  the  charge exchange contr ibut ion 
can be determined. I n  t h i s  analysis ,  an inverse fourth power i n t e r a c t i o n  poten- 
t i a l  was assumed t o  hold f o r  t h e  lower energy s c a t t e r i n g  i n t e r a c t i o n s  under inves- 
t i g a t i o n  i n  the ion-atom measurements. The v a l i d i t y  of thss  assumption as a r e s u l t  
of the recent  measurements reported by Menendez and Datz8 i s  subject  t o  considera- 
b l e  question. I n  the measurements of Menendez and Da tz ,  it was found tha t  a sig- 
n i f i c a n t  rainbowing e f f e c t  occurred a t  r e l a t i v e l y  la rge  s c a t t e r i n g  angles for  cesium 
ions  i n t e r a c t i n g  with argon, krypton, and nitrogen. The presence of t h i s  rainbow 
i n  the experimental d i f f e r e n t i a l  sca t te r ing  cross  sect ion implies tha t  the use of 
an inverse four th  power p o t e n t i a l  t o  describe the elastic s c a t t e r i n g  i n t e r a c t i o n  
a t  these low energies i s  undoubtedly incorrect .  
and Vandersl icel l  tha t  a 4-6-12 type p o t e n t i a l  should be considered even f o r  ex- 
remely low energy in te rac t ions ,  especial ly  when dealing w i t h  r e l a t i v e l y  la rge  par- 
t i c l e s , s u c h  as t h e  cesium system. The general  form of the  p o t e n t i a l  used t o  cal-  
c u l a t e  d i f f e r e n t i a l  s c a t t e r i n g  cross sections i s  given by 

It has been suggested by Mason 

where 

E i s  the p o t e n t i a l  w e l l  depth. 

y i s  a s t rength parameter of the  r-6 portion of the poten t ia l .  

r i s  equilibrium internuclear distance.  m 

I n  Eq. 4 the r-4 term includes the charge-dipole and the charge-induced dipole i n -  
t e r a c t i o n s  and the r-6 term includes charge-quadrupole, charge -induced quadrupole, 
and induced dipole-induced dipole in te rac t ions .  
which i s  the r-12 port ion of the poten t ia l  i s  the short-range repulsion term. 
two p a r t i c l e s  having the poten t ia l  function of the type described i n  Eq. 4, i n  which 

The l a s t  term i n  t h i s  expression 
When 

- 13 - 
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there a re  both a t t r a c t i v e  and repuls ive portions, i n t e r a c t ,  there  i s  a r e l a t i v e  
energy region i n  which rainbow phenomenon w i l l  be observed i n  the angular s c a t t e r -  
ing  d i s t r ibu t ion .  This e f f e c t  w i l l  also s ign i f i can t ly  a l ter  the magnitude of the 
d i f f e r e n t i a l  s ca t t e r ing  cross sect ion.  Calculations have been ca r r i ed  out t o  de- 
termine the  d i f f e r e n t i a l  e l a s t i c  sca t te r ing  cross sect ion a s  a function of energy 
f o r  the  cesium system t o  see i f  any s igni f icant  a l t e r a t i o n  i n  the  magnitude of the 
predicted e l a s t i c  s ca t t e r ing  cross  section would r e s u l t  from the inclusion of these 
addi t iona l  terms i n  the in t e rac t ion  potent ia l .  I n  these ca lcu la t ions  a value of 
4.4 8 was used f o r  the  equilibrium internuclear  dis tance.  
from the work of DeBoer12 on the spectra of the cesium molecular system. 
of y = 0.5 and a value of the polar izabi l i ty  of cesium equal t o  52.3 8 
mined from the measurements of Salop, et al . , l3 were used t o  determine the value of 
the w e l l  depth, c , from the  following expression: 

This value was obtained 

3 
A value 

as deter- 

4 e2a 3 2 ( l - y ) c r m  = - 
2 (5) 

Shown i n  Fig. 10 i s  the  d i f f e r e n t i a l  sca t te r ing  c ross  sec t ion  calculated f o r  a rela- 
t i v e  in t e rac t ion  energy of 3.38 eV. A s  can be seen i n  t h i s  f igure,  there i s  a s ig-  
n i f i c a n t  rainbowing e f f e c t  observed i n  the  d i f f e r e n t i a l  sc-t t tering c ross  sec t ion  a t  
an angle of approfimately 1.7 radians i n  t he  center-of-mass system. Shown i n  Fig. 
11 i s  the calculated d i f f e r e n t i a l  sca t te r ing  c ross  sec t ion  f o r  a r e l a t i v e  energy of 
0.543 eV. However, 
as i n  the case of the  higher energy calculat ion,  the d i f f e r e n t i a l  s ca t t e r ing  cross  
sec t ion  determined from the 4-6-12 in te rac t ion  po ten t i a l  as a function of angle i s  
s ign i f i can t ly  l a rge r  than tha t  predicted with only an inverse fourth power i n t e r -  
ac t ion  po ten t i a l .  The over -a l l  contribution of t h i s  e f f e c t  t o  the predicted elas- 
t i c  s ca t t e r ing  cross sec t ion  r e s u l t s  i n  approximately a 25 per cent  increase i n  the 
predicted e l a s t i c  s ca t t e r ing  cross-section values i n  the energy range of the cesium 
ion-cesium atom cross-sect ion measurements. The magnitude of the cross  sect ion 
predicted using the  4-6-12 type in te rac t ion  po ten t i a l  i s  sens i t i ve  t o  the values 
of rm, c , and y u s e d  i n  the  calculat ion.  I n  the  r e s u l t s  presented, every attempt 
was made t o  use the most rel’iable estimates of these values. On the  basis of these 
r e s u l t s  further work i s  being ca r r i ed  out t o  determine the  limits of uncertainty of 
the ca lcu la t ion  due t o  the  uncertaint ies  associated with the determination of the 
values of i , rm, and y and t o  evaluate the  effect  a possible  change i n  the magni- 
tude of the e l a s t i c  s ca t t e r ing  cross  section w i l l  have on the determination of ce- 
sium ion  mobi l i t i es .  

I n  t h i s  case the rainbowing e f f e c t  i s  not  as  r ead i ly  apparent. 

It i s  i n t e r e s t i n g  t o  note tha t  the presence of t h i s  e f f e c t  i n  the  cesium 
ion-cesium atm system can be detected a t  r e l a t i v e l y  l a rge  sca t t e r ing  angles. Shown 
i n  Fig. 12  i s  the calculated var ia t ion  i n  the d i f f e r e n t i a l  s ca t t e r ing  c ross  sec- 
t i o n  as a f’unction of energy f o r  a center-of-mass sca t t e r ing  angle 8 = 1.57 radians.  
A s  shown i n  t h i s  f igure,  a pronounced bump i n  the d i f f e r e n t i a l  cross  sec t ion  would 
occur approximately i n  the  3.0 t o  4.0 eV range if a 4-6-12 in t e rac t ion  po ten t i a l  
were appl icable  f o r  t h i s  type of system. 
i s  the d i f f e r e n t i a l  s ca t t e r ing  cross  section which would be predicted only fo r  an 
inverse  four th  power poten t ia l .  

Also p lo t ted  fo r  comparison i n  t h i s  f i g u r e  
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Outline of Research f o r  the Next Six-Month Period 

1. Measurements w i l l  be made of the cesium e f f lux  r a t e  from the e x i t  s l i t  of t h e  
electroformed c o l l i s i o n  chamber system t o  determine a t r u e  neu t r a l  densi ty  i n  
the c o l l i s i o n  chamber as a function of cesium reservoi r  temperature. 

2. On the bas i s  of the  densi ty  measurements, fu r the r  cesium ion-cesium atom cross-  
sec t ion  measurements w i l l  be conducted t o  f i rmly e s t a b l i s h  the ve loc i ty  depend- 
ence of the t o t a l  cross  sec t ion  a t  low energies .  

3. Calculations of the cesium ion mobility w i l l  be ca r r i ed  out  using the ex i s t ing  
t o t a l  c o l l i s i o n  cross-section information with the new 4-6-12 type in t e rac t ion  
po ten t i a l .  

- 15 - 
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ANGULAR DISTRIBUTION OF ELECTRONS 
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LOW-ENERGY ELECTRON-CESIUM ATOM COLLISION PROBABILITY INVESTIGATIONS* 

W i l l i a m  L .  Nighan 
United Aircraf t  Research Laboratories, E a s t  Hartford, Connecticut 

Abstract 

The e l a s t i c  electron-cesium atom momentum t r a n s f e r  c o l l i s i o n  probabi l i ty  has 
The been determined i n  the  e lec t ron  velocity range corresponding t o  0.45 t o  0 . 8 o z V .  

c o l l i s i o n  probabi l i ty  was determined from an analysis  of an e f fec t ive  electron-heavy 
p a r t i c l e  c o l l i s i o n  frequency obtained from measurements of the plasma propert ies  i n  a 
cesium a r c  discharge. The e f fec t ive  co l l i s ion  frequency was found t o  be strongly de- 
pendent on e lec t ron  temperature i n  t h e  2000 t o  5000°K range and s igni f icant ly  de 
en t  on plasma degree of ionizat ion f o r  values of t h i s  parameter g r e a t e r  than 10' . 
The c o l l i s i o n  probabi l i ty  determined f rom an analysis  of the  i n t e g r a l  equation de - 
scr ibing t h e  e f f e c t i v e  c o l l i s i o n  frequency has been found t o  be a strong funct ion of 
e lec t ron  ve loc i ty  having a pronounced minimum of approximately 100 t o  300 c o l l i s i o n s  
per cm mm Hg i n  the 0.45 t o  0.65 f i  range of e lec t ron  v e l o c i t i e s ,  rising t o  a value 
about an order of magnitude l a r g e r  i n  the veloci ty  range corresponding t o  0.75 t o  

rnd- 

1.0 &. 
1. Introduction 

Electron-atom momentum t ransfer  c o l l i s i o n s  a re  known t o  play a dominant ro le  
i n  t h e  determination of the  t ranspor t  properties of s l i g h t l y  and p a r t i a l l y  ionized 
plasmas. A s  a r e s u l t ,  a knowledge of tk e l a s t i c  electron-cesium atom c o l l i s i o n  cross  
sect ion f o r  momentum t r a n s f e r ,  i .e., c o l l i s i o n  probabi l i ty ,  i s  a prerequis i te  f o r  ob- 
t a i n i n g  an understanding of t h e  physical propert ies  of the  non-equilibrium plasma t h a t  
e x i s t s  i n  thermionic converters and other plasma devices employing cesium vapor i n  an 
ionized s t a t e .  
less than 1.0 e V .  I n  t h i s  range of electron energies there  i s  approximately an  order 
of magnitude v a r i a t i o n  i n  the  experimental cross-section values reported i n  the l i tera-  
ture with no p a r t i c u l a r  energy dependence exhibi ted i n  the  da ta .  

I n  most p r a c t i c a l  cesium plasma devices, e lec t ron  mean energies a r e  

A compilation of t h e  available electron-cesium atm c o l l i s i o n  probabi l i ty  
d a t a  i s  presented i n  F i g .  1. R. B. Brodel measured t h e  t o t a l  c o l l i s i o n  probabi l i ty  
(approximately .equal t o  t h e  momentum t ransfer  c o l l i s i o n  probabi l i ty  f o r  nearly i so-  
t r o p i c  scattering) over t h i r t y  years ago using monoenergetic e lec t ron  beam techniques. 
H i s  measurements cover a range down t o  an e lec t ron  energy of approximately 0.6 eV and 
are considered t o  have establ ished at l e a s t  the  approximate magnitude and general  
q u a l i t a t i v e  behavior of the  c o l l i s i o n  probabili ty f o r  energies near 1 .O eV. However, 
experimental d i f f i c u l t i e s  associated with t h e  use of very low-energy e lec t ron  beams 
have prevented the extension of these methods t o  lower energies,  and i n  f a c t ,  Brode's 
measurements have not even been checked f o r  cesium a t  the  higher energies.  The data 
presented i n  Refs, 2 through 11 have been determined from electron swarm experiments 
where t h e  electrons are d is t r ibu ted  i n  veloci ty  over almost the  e n t i r e  energy range 
from 0 t o  1.0 e V .  These experiments were each designed t o  measure a d i f f e r e n t  

~ ~~ ~~ ~ 

*Portions of t h i s  work were supported by t h e  National Aeronautics and Space 
Administration under Contract NAS3-4171. 
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e lec t ron  t ranspor t  property i n  a cesium plasma from which an average c o l l i s i o n  prob- 
a b i l i t y  was then determined. Unfortunately, the  importance of proper averaging of the  
velocity-dependent c o l l i s i o n  probabili ty over e lec t ron  v e l o c i t i e s  has not been appreci-  
a ted,  and since plasma t ransport  properties depend on the averaging process, l a rge  d i s -  
crepancies i n  the  various measurements can e x i s t  as a r e s u l t  of misinterpretat ion of 
experimental data,  even though the measurements may be s u b s t a n t i a l l y  cor rec t .  

Another s ign i f icant  point concerns t h e  contr ibut ion made by electron-ion co l -  
l i s i o n s  i n  t h e  various invest igat ions.  For approximately half  of t h e  avai lable  experi- 
mental c o l l i s i o n  probabi l i ty  data,  par t icu lar ly  those obtained from device s tudies ,  
e lectron-ion e f f e c t s  have been neglected a l toge ther .  
assumed that electron-atom and electron-ion r e s i s t i v e  effects can be t r e a t e d  separately 
and added l i k e  r e s i s t i v i t i e s  without regard t o  t h e  method of averaging over t h e  e l e c -  
t r o n  ve loc i ty  d i s t r i b u t i o n .  This procedure and other such averaging techniques can 
r e s u l t  i n  la rge  e r r o r s  i n  the  in te rpre ta t ion  of experimental data  i f  t h e  c o l l i s i o n  
probabi l i ty  i s  a strong function of e lectron veloci ty ,  as most of the  avai lable  ex- 
perimental and t h e o r e t i c a l  work f o r  cesium indicates .  

For t h e  other  half it has been 

The objective of t h e  research program reported herein was t o  obtain experi- 
mental d a t a  from measurements of t h e  plasma propert ies  i n  t h e  posi t ive column of a dc 
cesium arc discharge, which i s  amenable t o  a n a l y t i c a l  and laboratory diagnosis. These 
measurements lead t o  an e f f e c t i v e  electron-cesium heavy p a r t i c l e  c o l l i s i o n  frequency 
from which t h e  a c t u a l  momentum t r a n s f e r  c o l l i s i o n  probabi l i ty  i s  then obtained from an 
ana lys i s  of t h e  i n t e g r a l  t ranspor t  equation describing t h e  e f f e c t i v e  c o l l i s i o n  f re-  
quency. With these r e s u l t s  a cmparison i s  made with the  ex is t ing  c o l l i s i o n  probabil-  
i t y  d a t a  in te rpre ted  on a common basis and with the  ava i lab le  t h e o r e t i c a l  predict ions 
of t h e  electron-cesium atom c o l l i s i o n  probabili ty.  

2. Theory and t h e  Plasma Model 

The equation describing the electron current flow through a plasma under the  
inf luence of a dc e l e c t r i c  f i e l d  may be derived on the bas i s  of the physical model f o r  
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a plasma o r ig ina l ly  developed by Lorentz. I n  t h i s  approach it i s  assumed 
t h a t  co l l i s ions  are instrumental  i n  setting up a near ly  spher ica l ly  symmetric ve loc i ty  
d i s t r ibu t ion  of e lec t rons  and t h a t  s m a l l  deviat ions from spher ica l  symmetry are de- 
scr ibed w i t h  su f f i c i en t  accuracy by the  second term i n  the spher ica l  harmonic expan- 
s ion of t he  ve loc i ty  d i s t r ibu t ion  function. Upon subs t i t u t ion  of t h i s  f i rs t  order 
expansion i n t o  the  Boltzmann equation, two coupled equations describing the  re la t ion-  
sh ip  of t he  terms of t h e  expansion r e su l t .  From these  r e l a t ions  and the  equation for 
p a r t i c l e  current ,  t h e  following equation may be obtained f o r  the  current  densi ty  J: 

where m, e ,  v, and ne are the e lec t ron  mass, charge, veloci ty ,  and number densi ty ,  
E the e l e c t r i c  f i e l d  in t ens i ty ,  f o  the i so t ropic  part (f irst  term i n  the spher ica l  
harmonic expansion) of t he  e lec t ron  veloci ty  d i s t r ibu t ion  funct ion normalized with 
r e s p c t  t o  e lec t ron  density,  and Vea(i) the  e l a s t i c  electron-atom ( ion)  c o l l i s i o n  
frequency f o r  mmentum t r a n s f e r .  
ion c o l l i s i o n  frequencies are r e l a t ed  t o  t h e i r  respect ive momentum t r a n s f e r  cross  
sect ions by 

The velocity-dependent electron-atom and electron-  

where na i s  the atom number density,  &ea(v) t h e  e las t ic  electron-atom momentum t r ans -  
f e r  cross  section, ni_ t h e  ion number density (equal t o  the e lec t ron  number densi ty  i n  
a neu t r a l  plasma) and Qi (v )  i s  the  e f fec t ive  e l a s t i c  electron-ion momentum t r a n s f e r  
cross  sec t ion .  
homogeneous, that the  c o l l i s i o n a l  f r i c t i o n  force exerted on e lec t rons  i s  due t o  elas- 
t i c  nomentum t r a n s f e r  encounters with heavy particles which are assumed i n f i n i t e l y  
massive i n  comparison with electrons,  and that electron-electron encounters have no 
d i r ec t  influence on the  momentum of t h e  e lec t ron  gas.  A more complete ana lys i s  of 
t he  problem, which y i e lds  t h i s  r e s u l t ,  i s  presented i n  Ref. 1.3. 

I n  t he  der ivat ion of Eq. 1 it has been assumed that  the  plasma i s  

For the cesium arc discharge plasma ( t o  be described i n  Section 2)  which i s  
t h e  subject  of t h i s  ana lys i s ,  t he  r e l a t ive ly  high degree of ion iza t ion  (>lo- k ) r e s u l t s  
i n  exbremely short; e lec t ron  themal i za t ion  times. 
e lectron-electron co l l i s ions  a re  instrumental i n  es tab l i sh ing  a Maxwellian d i s t r ibu -  
t i o n  of e l ec t ron  ve loc i t i e s .  
tr ibuti-on and Eq. 2 relating c o l l i s i o n  frequency t o  cross sec t ion  r e s u l t s  i n  the  f o l -  
lowing expression f o r  t he  current density: 

Therefore, it w i l l  be assumed t h a t  

U s i n g  t he  Maxwellian form f o r  the e lec t ron  ve loc i ty  dis-  

where k i s  Boltvaannls  constant,  Te t he  e lec t ron  temperature, and a t h e  degree of ion- 
i z a t i o n  defired as the  r a t i o  of e lectron densi ty  t o  atom densi ty .  

Equation 2 relates the  e las t ic  e lectron-ion momentum t r a n s f e r  c o l l i s i o n  f r e -  
quency t o  an e f fec t ive  electron-ion co l l i s ion  c ross  sect ion which represents  t h e  
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col lec t ive  e f f e c t s  of electron-ion interact ions.  I s o l a t e d  coulomb c o l l i s i o n s  i n  a 
plasma cannot be physically distinguished because of t h e  long range of t he  coulomb 
force f i e l d .  However, as an approximation a two-body coulomb c o l l i s i o n  term can be 
derived c l a s s i c a l l y  i n  which scat ter ing i s  l imi ted  t o  p a r t i c l e s  within a Debye sphere 
about the  t e s t  charge. This  procedure eliminates t h e  divergence of the  i n t e g r a l  de- 
scr ibing the  e f f e c t i v e  electron-ion momentum t r a n s f e r  cross  sect ion and reasonably 
accounts f o r  t h e  shielding e f f e c t  which r e s u l t s  i n  t h e  necessar i ly  f i n i t e  value f o r  
the  cross sect ion.  The der ivat ion of the e f fec t ive  electron-ion c o l l i s i o n  term pre- 
sented i n  d e t a i l  i n  Refs. 13 and 1 5  reduces t o  t h e  following expression: 

where eo i s  the permi t t iv i ty  of free space. 
electron-ion in te rac t ions  by Eq. 4 i s  adequate f o r  the  purpose of t h i s  invest igat ion,  
s ince electron-ion e f f e c t s  never dominate i n  t h e  range of plasma conditions encoun- 
t e r e d  i n  t h i s  expr iment .  

The representat ion of t h e  e f f e c t  of 

I n  the  a n a l y t i c a l  developnent leading up t o  Eq. 3, it was assumed t h a t  the 
plasma w a s  homogeneous. I n  the  case of t h e  c y l i n d r i c a l  cesium a r c  discharge, it i s  
assumed tha t  a x i a l  and circumferential  uniformity e x i s t s  and t h a t  the only gradient  
i n  t h e  radial  d i rec t ion  i s  t h e  electron densi ty  v a r i a t i o n  resu l t ing  from p a r t i c l e  
d i f fus ion  t o  t h e  walls of the  discharge tube.  
plasma gradients  i n  t h e  d i rec t ion  of discharge current flow, the  plasma behaves as 
though it were homogeneous, and a simple averaging process can be used t o  account 
f o r  the  r a d i a l  var ia t ion  i n  discharge current densi ty  caused by the diffusion gra-  
d ien t  i n  e lec t ron  densi ty .  Since it i s  assumed that  circumferential  uniformity i n  
plasma propert ies  e x i s t s ,  the  current flow through a cross-sect ional  a rea  of the  
discharge tube i s  given by 

Because there  are no s igni f icant  

where I i.s.the discharge current and R the  tube radius .  If it i s  assumed t h a t  t h e  
radial v a r i a t i o n  i n  degree of ionization can be reasonably represented by a parabola 
of the form 

where a0 i s  t h e  degree of ionizat ion on t h e  tube a x i s  (ne&,), and t h i s  form i s  
then  used i n  conjunction w i t h  Eq. 3, Eq. 5 becomes 

Since r and v are independent, the  rad ia l  in tegra t ion  can be performed, and Eq.  7 
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reduces t o  

It i s  convenient t o  define an e f fec t ive  c o l l i s i o n  frequency from the  re la t ionship  
between current flow and e l e c t r i c  f i e l d  i n t e n s i t y ,  i . e  ., 

neeoe2 rr R~ 
Veff 2 

I=-.-  E .  (1-9) 

Solving f o r  t h e  e f fec t ive  c o l l i s i o n  frequency defined by Eqs. 8 and 9 and normalizing 
with respect t o  atom density y ie lds  

Equation 10, defining the  normalized e f fec t ive  c o l l i s i o n  frequency, represents an 
average of t h e  t o t a l  normalized electron heavy p a r t i c l e  momentum t r a n s f e r  c o l l i s i o n  
frequency and i s  a function of e lectron temperature and degree of ionizat ion alone. 
It should be noted t h a t  t h i s  normalized e f f e c t i v e  c o l l i s i o n  frequency i s  not the 
simple average of c o l l i s i o n  frequency over the  ve loc i ty  d i s t r i b u t i o n  but r a t h e r  i s  
an average of t h e  reciprocal  sum of momentum t r a n s f e r  c o l l i s i o n  frequencies repre-  
senting s p e c i r i c a i i y  .cne over-ai i  r e s i s l i v e  el"rect of uoiiieiik.ai t r a i i ~ f e ~  c ~ l l i ~ l s i n s  
on dc current flow. S p a t i a l  averaging has been performed t o  account f o r  the  r a d i a l  
dependence of t h e  electron-ion contribution t o  t h e  over-al l  res i s tance  t o  discharge 
current flow. 

It i s  apparent from Eq. 10 that a knowledge of t h e  normalized e f f e c t i v e  col-  
l i s i o n  frequency dependence on electron temperature and degree of ionizat ion could 
lead  t o  information pertaining t o  t h e  fundamental electron-atom cross sect ion which 
appears i n  t h e  integrand of t h e  in tegra l .  An extensive numerical analysis  of t r i a l  
funct ions f o r  t h e  electron-atom cross  section has been c a r r i e d  out based on t h e  ex- 
perimental  information obtained from t h i s  invest igat ion.  
s is  are presented i n  Section 5 .  

The r e s u l t s  of t h a t  analy- 

The normalized e f f e c t i v e  c o l l i s i o n  frequency of Eq. 10 can be re la ted  t o  t h e  
measurable parameters of t h e  cesium arc  discharge plasma from Eq. 9 .  Using t h e  per- 
f e c t  gas re la t ionship  

P 
" a  'kTg 1 (I -11) 

where P and T are the  cesium vapor pressure and temperature, t h e  following expres- 
s i o n  f o r  t h e  e f fec t ive  c o l l i s i o n  frequency i s  obtained: 

g 

* -  e 2 k  v R 2 n e o E  
V,ff - -- ' 

2 m  (PITg)  I . (1-12) 
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Equation 12 was used t o  determine experimentally the normalized e f f e c t i v e  c o l l i s i o n  
frequency from measurements of e lectron density,  e l e c t r i c  f i e l d  i n t e n s i t y ,  gas 
pressure and temperature, and discharge current .  

3. Description of the Experiment and Diagnostic Techniques 

The t h e o r e t i c a l  analysis  presented i n  the  previous sect ion was  used t o  de- 
scr ibe t h e  plasma of the  posi t ive column of the  cesium a r c  discharge.  The cesium a r c  
discharge was chosen as t h e  laboratory plasma of t h i s  invest igat ion because it has 
propert ies  i n  t h e  ranges of p r a c t i c a l  interest  and i s  amenable t o  a n a l y t i c a l  and 
laboratory diagnosis.  
t h e  normalized e f f e c t i v e  c o l l i s i o n  frequency, t h e  e lec t ron  densi ty  and temperature 
a r e  t h e  two most d i f f i c u l t  t o  measure. 
avai lable;  however, t h e  most p r a c t i c a l  f o r  obtaining these p a r t i c u l a r  plasma prop- 
e r t i e s  i s  t h e  e l e c t r o s t a t i c  probe. From an analysis  of t h e  current-voltage charac- 
ter is t ics  of an e l e c t r o s t a t i c  probe, t he  e lec t ron  temperature and densi ty  can be 
determined, and t h e  assumption regarding t h e  equilibrium d i s t r i b u t i o n  of e lec t ron  
energies v e r i f i e d .  I n  addition, t h e  e l e c t r i c  f i e l d  can be determined from plasma 
p o t e n t i a l  measurements made with probes posit ioned a x i a l l y  along the  pos i t ive  column. 
A high degree of spatial resolut ion can be rea l ized  with e l e c t r o s t a t i c  probes, and 
they can be moved from point t o  point i n  t h e  plasma t o  measure l o c a l  conditions.  

Of t h e  parameters i n  Eq. 12 required t o  obtain experimentally 

Various plasma diagnostic techniques are 

An i l l u s t r a t i o n  of a t y p i c a l  discharge tube i s  shown i n  Fig. 2. Cathode- 
to-anode separation i n  t h i s  tube was 50 cm and the  inside diameter 3.8 cm. 
operation t h e  tube was located within a dua l  oven which control led the gas  tempera- 
t u r e  and prevented cesium from condensing on the tube walls. The cesium appendix 
shown i n  t h e  f igure  extended down t o  t h e  lower portion of t h e  oven, which w a s  always 
held at  a lower temperature than t h e  main oven and control led t h e  cesium vapor pres- 
sure .  The cesium pressure was determined from t h e  cesium vapor pressure curve of 
R e f .  16. 

During 

Fig. 2 Cesium Discharge Tube 

were constructed i n  The e l e c t r o s t a t i c  probe s i d e a m  assemblie uch a way t h a t  t h e  

The probes were con- 
probes, which protruded through a small hole  i n  the wall of t h e  discharge tube, 
could be moved r a d i a l l y  i n t o  the plasma by means of a magnet. 
s t r u c t e d  of 0.010-in. diameter tungsten rod covered w i t h  a g l a s s  sheath which served 

1 - 6  
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as an e l e c t r i c a l  insu la tor .  The e n t i r e  assembly averaging 0,018 i n .  i n  diameter was 
ground f l a t ,  exposing only t h e  0.010-in. tungsten t i p  t o  the  plasma. Great care was 
exercised i n  the fabr ica t ion  of the  e l e c t r o s t a t i c  probes i n  order t o  make them as 
small as possible so  tha t  the t i p  of t h e  probe (co l lec t ion  a rea)  exposed t o  t h e  plasma 
was both f l a t  and f lush  wi th  the  g l a s s  insulat ion.  
examined with a microscope at operating temperature i n  the  discharge tube so  t h a t  any 
f l a w  could be detected.  A schematic of t h e  movable probe and sidearm assembly i s  

I 

The probe t i p s  were per iodical ly  

I shown i n  Fig.  3. 
I .  

DISCHARGE TVBE 
41 mm PYREX 

SEE 
ENLbRtEYENT 

Fig. 3 Movable E l e c t r o s t a t i c  Probe 
Sidearm Assembly 

The e lec t ron  temperature, e lectron density,  and plasma p o t e n t i a l  var ia t ions  
i n  t h e  discharge have been measured using pulsed e l e c t r o s t a t i c  probe techniques. 
pulsing system was used t o  apply a cleaning pulse,  sweep voltage o r  da ta  acquis i t ion  
pulse,  and rest voltage t o  t h e  probe; the time duration of each port ion of t h e  probe 
pulse could be var ied independently. The time scale  of the t o t a l  pulse applied t o  
t h e  probe with t h i s  system ranged from approximately 100 microseconds t o  100 m i l l i -  
seconds. 
e r r o r s  due t o  c i r c u i t  and plasma response l imi ta t ions ,  and the e f f e c t  of plasma d r i f t  
o r  i n s t a b i l i t y  can be detected.  The importance of being able  t o  vary sweep speed and 
appl ied voltage i n  t h i s  manner i s  de ta i led  i n  Refs. 17 and 18. 
pulse waveform i s  shown i n  Fig.  4 along with a t y p i c a l  photograph and semilog p lo t  of 
a probe current-voltage charac te r i s t ic .  The l i n e a r  behavior of the semilog p l o t s  of 
t h e  e l e c t r o s t a t i c  probe current -voltage c h a r a c t e r i s t i c  was experimental v e r i f i c a t i o n  
of t h e  exis tence of a Maxwellian d is t r ibu t ion  of v e l o c i t i e s  at l e a s t  f o r  t h e  slow 
moving e lec t rons  i n  t h e  body of t h e  d i s t r ibu t ion  which are responsible f o r  the  t r a n s -  
port  p roper t ies  i n  t h e  plasma. 
(approximately 10 microamps) were random i n  nature and due t o  the  limits of sensi-  
t i v i t y  of t h e  system. 

A 

With such v e r s a t i l i t y  the e f f e c t  of changing probe surface conditions, 

A schematic of t h e  

Deviations frm l i n e a r i t y  at  t h e  low probe currents  

The approximation of the  radial v a r i a t i o n  of the  degree of ionizat ion by 
a parabola was v e r i f i e d  experimentally with t h e  movable e l e c t r o s t a t i c  probes. 
measurements of e lec t ron  densi ty  have been made over a l l  ranges of discharge current 
and pressure.  A t y p i c a l  p l o t  of the  rad ia l  densi ty  p r o f i l e  i s  shown i n  Fig.  5 f o r  
various a r c  currents ,  where a comparison i s  made with both the lowest order Bessel 
funct ion and t h e  assumed parabolic form. It i s  apparent from t h i s  f igure  t h a t  t h e  
assumption of a parabolic r a d i a l  dependence f o r  t h e  electron density and consequently 

Radial 
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16x10", , I , , , I , I , 

Vp-ARBITRARY UNITS 

Fig. 4 Typical Semilog Plo t  of Probe Fig.  5 Variat ion of Electron Density 
Current -Voltage Charac te r i s t ic  with Radial Posi t ion 

t h e  degree of ion iza t ion  i s  sa t i s fac tory .  The e lec t ron  temperature determined from 
t h e  r a d i a l  probe measurements showed no s ign i f i can t  dependence on r a d i a l  pos i t ion .  
The a x i a l  uniformity of plasma propert ies  was v e r i f i e d  f rm measurements made with 
e l e c t r o s t a t i c  probes posit ioned axially along t h e  discharge column. Measurements 
made over a l l  discharge conditions indicate  no s ign i f i can t  a x i a l  gradients  i n  plasma 
proper t ies .  

19 Since the  physical  presence of a probe may s ign i f i can t ly  perturb a plasma, 
e r r o r s  i n  the determination of e lectron densi ty  from probe measurements can be r e l a t e d  
t o  probe s i z e .  I n  order t o  check on possible per turbat ions of t h e  plasma re su l t i ng  
from t h e  presence of t he  e l e c t r o s t a t i c  probes, a spec ia l  discharge tube w a s  con- 
s t ruc t ed  which contained probes of a s igni f icant ly  l a r g e r  s i z e  than the  0.010-in. 
diameter probes described previously. 
diameter and two 0.0315-in. diameter e l e c t r o s t a t i c  probes a l t e r n a t e l y  posi t ioned 
along t h e  tube axis. The l a rge  probes occupied a volume about th ree  times as la rge  
as t h e  s m a l l  probes and had a col lec t ion  a rea  approximately t e n  times l a rge r .  
Measurements made over t h e  e n t i r e  range of cesium pressures,  and a rc  cur ren ts  used 
i n  t h i s  inves t iga t ion  indicated no s igni f icant  va r i a t ion  of e i t h e r  e lec t ron  densi ty  
or  temperature with probe s i z e .  The greatest discrepancy i n  t h e  e l ec t ron  densi ty ,  
as determined with the  la rge  and small probes, was 20 per cent at  t h e  highest  pres- 
sure. On t h e  b a s i s  of these  r e s u l t s  it was concluded t h a t  the small 0.010-in. d i -  
ameter probes d id  not per turb t h e  plasma f o r  t h e  conditions encountered i n  t h i s  
experiment. 

Incorporated i n  t h i s  tube were three 0.010-in. 

4. Measurements and Results 

Typical measurements were conducted w i t h  cesium pressure and discharge 
cur ren t  as independent experimental var iables .  For moderate cesium pressures 

1 - 8  
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t o  10-l mm Hg) and a r c  currents  (0.3 t o  1.5 amps), the e lec t ron  temperature 

From measurements 
determined from the  slope of t h e  semilog current-voltage c h a r a c t e r i s t i c s  of t h e  
e l e c t r o s t a t i c  probes var ied from approximately 2500 t o  4500OK. 
of the  plasma f l o a t i n g  poten t ia l  obtained w i t h  probes posit ioned along t h e  a x i s  of 
t h e  tube and from a knowledge of t h e  spacing between probes, t h e  e l e c t r i c  f i e l d  i n -  
t e n s i t y  was determined and found t o  vary from about 0.2 t o  0.6 volts/cm. The e l e c -  
t r o n  densi ty  on the a x i s  of the  tube varied from approximately t o  3 x 10l2 
electrons/cc. From these values of the e lec t ron  density and the cesium atom den- 
s i t y  calculated from the  perfect  gas law (Eq. ll), t h e  degree of ionizat ion along 
the  tube axis,  ao, was obtained. Because of t h e  r a d i a l  v a r i a t i o n  of e lec t ron  den- 
s i t y  and t h e  independence of atom density on tube radius,  t h e  degree of ionizat ion 
var ied r a d i a l l y  i n  the  same manner as the e lec t ron  densi ty  (Fig.  5 ) .  

Using t h e  re la t ionship  of Eq. 12, the  normalized e f f e c t i v e  electron-  
cesium heavy p a r t i c l e  c o l l i s i o n  frequency has been determined over t h e  range of 
plasma var iab les  from the  experimental data  of severa l  test  runs. 
t h i s  e f f e c t i v e  c o l l i s i o n  frequency as a funct ion of e lec t ron  temperature and degree 
of ionizat ion on t h e  tube axis. 

Figure 6 presents 

The e f fec t ive  c o l l i s i o n  frequency da ta  of t h i s  

Fig. 6 Expr imenta l ly  Determined Normalized 
Effect ive Electron-Cesium Heavy 
P a r t i c l e  Col l i s ion  Frequency 

f i g u r e  were obtained from two d i f fe ren t  discharge tubes and several  e l e c t r o s t a t i c  
probes posit ioned at d i f fe ren t  points  along t h e  tube axis. 
t i o n  i n  experimental conditions, t h e  s c a t t e r  i n  the  da ta  points  was very s m a l l .  
i s  apparent fram Fig. 6, a c l e a r l y  defined t rend  i n  the  c o l l i s i o n  frequency e x i s t s  
with both e lec t ron  temperature and degree of ionizat ion.  O f  p a r t i c u l a r  s ignif icance 
i s  t h e  s t rong dependence of e f f e c t i v e  c o l l i s i o n  frequency on e lec t ron  temperature. 
Moving along a constant degree of ionizat ion l i n e ,  t h e  e f f e c t i v e  c o l l i s i o n  frequency 
increases  by a f a c t o r  of two over t h e  experimental e lec t ron  temperature range. Also 
s i g n i f i c a n t  i s  the  - f a c t  t h a t  the  co l l i s ion  frequency shows a pronounced dependence on 
t h e  degree of ionizat ion i n  t h e  
cesium plasmas a r e  of ten neglected. 
ion effects i n  the  t h e o r e t i c a l  analysis of t h e  plasma model becomes apparent. 

I n  s p i t e  of t h i s  var ia -  
A s  

t o  10-3 range, where electron-ion e f f e c t s  i n  
Consequently, t h e  necessi ty  of including electron-  
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5. Analysis of T r i a l  Functions f o r  the  Cross Section 

Since t h e  experimental measurement of plasma propert ies  leads t o  a normal- 
ized e f fec t ive  electron-cesium heavy p a r t i c l e  c o l l i s i o n  frequency which i s  an aver- 
age over a l l  e lec t ron  v e l o c i t i e s ,  it i s  necessary t o  determine how t h e  i n t e g r a l  
(Eq. 10) describing t h i s  c o l l i s i o n  frequency behaves as a function of e lec t ron  tem- 
perature and degree of ionizat ion f o r  var ia t ions i n  the  form of the  ve loc i ty  depend- 
ence of t h e  c o l l i s i o n  probabi l i ty .  Numerical in tegra t ion  techniques permit t h e  
analysis  of t h i s  integrated behavior f o r  a v a r i e t y  of t r i a l  forms f o r  the  c o l l i s i o n  
probabi l i ty  ve loc i ty  dependence. I n i t i a l l y ,  various t r ia l  forms were se lec ted  on 
t h e  bas i s  of bes t  estimates as t o  the magnitude of t h e  c o l l i s i o n  probabi l i ty  and on 
t rends observed i n  e x p r i m e n t a l  and t h e o r e t i c a l  data.  Subsequently, hundreds of 
addi t iona l  functions representing almost every reasonable magnitude and ve loc i ty  
dependence i n  t h e  range of i n t e r e s t  were numerically integrated,  yielding a v a r i e t y  
of hypothetical  normalized e f fec t ive  c o l l i s i o n  frequency curves with e lec t ron  t e m -  
perature and degree of ionizat ion as var iables .  This was done s o  t h a t  an accurate 
estimate of the  resolut ion of t h e  technique could be made and s o  t h a t  t rends  i n  the  
experimental data  could be understood and r e l a t e d  t o  the  type of cross-section be- 
havior l i k e l y  t o  have produced them. Following t h i s  procedure a p a r t i c u l a r  c l a s s  
of functions f o r  the  velocity-dependent electron-cesium atom momentum t r a n s f e r  cross 
sec t ion  has been found, which when integrated,  gives  t h e  b e s t  f i t  t o  the  experimental 
da ta  of Fig. 6 .  The in tegra ted  value of t h i s  bes t  estimate f o r  the  cross  sec t ion  i s  
compared i n  Fig. 7 with t h e  experimental data .  The dashed l i n e s  of t h i s  f igure  are 

---- EXFCRIMENlAL MTA - NUMERICAL DATA 

Fig. 7 Comparison of Experimentally Deter- 
mined and Numerically Calculated 
Effect ive Coll is ion Frequency 

c 
L A A e  same s t r a i g h t  l i n e s  drawn throug.- t h e  e f f e c t i v e  c o l l i s i o n  frequency data of Fig.  6. 
It i s  apparent from t h i s  f igure  t h a t  the quant i ta t ive  and q u a l i t a t i v e  agreement between 
theory and experiment i s  qui te  good. 
temperature dependence i s  exact ly  duplicated by t h e  numerically calculated curve, and 
t h e  agreement between the two s e t s  of curves f o r  the parametric dependence on the de- 
gree of ionizat ion i s  a l s o  very good. 
highest  degree of ionizat ion i s  only 15 per cent and i s  well within the  l i m i t s  of 

The slope of the e f f e c t i v e  c o l l i s i o n  frequency 

The maximum discrepancy t h a t  does occur f o r  the  

I - 10 
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uncertainty of the  experiment, the theore t ica l  model, and t h e  t h e o r e t i c a l  form used 
t o  represent electron-ion e f f e c t s .  Therefore, addi t iona l  refinement of the approxi- 
mation f o r  %a(.) would not be meaningful. 

- o ( r n 2 1 . 0 ~ ~ 3  ~ I @ ' P ~  / - 
V M f S E C ~ 5 9 3 X 1 0 5 ~  / 

I 
I 

2 8  - I 

YIELDS BEST FIT TO - 
EXP DATA - ---C€FlNES LIMITS OF - 
UNCERTAINTY 

32- - 

- 

Only one c lass  of functions f o r  t h e  velocity-dependent c o l l i s i o n  probabi l i ty  
yields  the agreement between theory and experiment described i n  the  previous paragraph. 
Figure 8 presents t h i s  c o l l i s i o n  probabi l i ty  as a function of e lec t ron  veloci ty .  
can be seen from the f igure ,  the  co l l i s ion  probabi l i ty  resu l t ing  i n  the  best  agreement 
between theory and experiment ( s o l i d  l i n e  i n  Fig. 8)  i s  a strong function of e lec t ron  
veloci ty ,  r i s i n g  from a minimum value of approximately 100 c o l l i s i o n s  per cm mm Hg i n  
an e lec t ron  ve loc i ty  range corresponding t o  0.4 t o  0.6 ,/8 t o  a maximum over a n  order 
of magnitude l a r g e r  at a veloci ty  i n  the 0.7 t o  0.8 f i  range, where the p o s s i b i l i t y  
of a resonance i n  t h e  c o l l i s i o n  probabi l i ty  appears t o  e x i s t .  It i s  t h i s  very rapid 

A s  

Fig. 8 Electron-Cesium Atom Momentum 
Transfer Col l is ion Probabi l i ty  

increase i n  t h e  c o l l i s i o n  probabi l i ty  a t  approximately O . 7 m  t h a t  produces t h e  
strong e lec t ron  temperature dependence of t h e  e f f e c t i v e  c o l l i s i o n  frequency. There 
i s  a lo s s  of s e n s i t i v i t y  below approximately 0.4 f i  due t o  t h e  f a c t  t h a t  f o r  lower 
e l e c t r o n  v e l o c i t i e s  electron-ion interact ions begin t o  dominate the  c o l l i s i o n a l  
process f o r  t h e  degrees of ionizat ion covered i n  t h i s  experiment. A decrease i n  sen- 
s i t i v i t y  at t h e  high-energy end of the  ve loc i ty  spectrum r e s u l t s  from the  small num- 
ber  of e lec t rons  i n  t h e  t a i l  of t h e  electron ve loc i ty  d i s t r i b u t i o n .  
higher e l e c t r o n  v e l o c i t i e s  the  co l l i s ion  probabi l i ty  must maintain the  approximate 
magnitude indicated by t h e  cross-hatchedarea of t h e  f igure;  t h i s  magnitude i s  i n  
agreement with t h a t  es tabl ished by Brode ' s  t o t a l  c o l l i s i o n  probabi l i ty  data.' 
though t h e  c o l l i s i o n  probabi l i ty  velocity s t ruc ture  cannot be precisely determined 
above a ve loc i ty  of approximately 0 . 8 m ,  the  magnitude of the  c o l l i s i o n  probabil-  
i t y  above t h i s  l e v e l  s t i l l  carries weight i n  t h e  in tegra t ion  leading t o  the  e f f e c t i v e  
c o l l i s i o n  frequency. The envelope defined by the  dashed l i n e s  i n  Fig. 8 ind ica tes  
t h e  limits of uncertainty i n  t h e  co l l i s ion  probabi l i ty  i n  various veloci ty  ranges; 
t h e  manner i n  which the  envelope was establ ished i s  discussed i n  subsequent 
paragraphs. 

However, f o r  

A l -  

I - 11 
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i n  the  veloci ty  s t ruc ture  of the c o l l i s i o n  probabi l i ty  resu l t ing  from var ia t ions  i n  
the  t h e o r e t i c a l  expression f o r  the effect ive c o l l i s i o n  frequency (Eq. 10) and the e f -  
fec t ive  electron-ion cross sect ion term (Eq. 4);  the  over-al l  resolut ion of t h e  " t r i a l  
function" technique f o r  t h e  range of experimental var iables  covered i n  t h i s  investiga- 
t i o n  has a l s o  been considered. The f a c t  tha t  the  experimentally determined normalized 
e f fec t ive  c o l l i s i o n  frequency i s  a function of two var iab les  (e lec t ron  temperature and 
degree of ion iza t ion) ,  r a t h e r  than the  usual s ingle  parameter (e lec t ron  temperature), 
has been found t o  r e s u l t  i n  a s ignif icant  improvement i n  the a b i l i t y  of t h e  t r i a l  func- 
t i o n  technique t o  determine the ve loc i ty  s t ruc ture  of t h e  c o l l i s i o n  probabi l i ty .  Nu- 
merical  experimentation with various t r i a l  functions has i l l u s t r a t e d  t h e  f a c t  t h a t  the  
coupling between the experimental e lectron temperature range of t h i s  invest igat ion and 
the  e lec t ron  veloci ty  range of s e n s i t i v i t y  i s  subs tan t ia l ly  strengthened by the  nor- 
malized e f fec t ive  c o l l i s i o n  frequency dependence on degree of ionizat ion.  This depend- 
ence places addi t ional  requirement s on the exact c o l l i s i o n  probabi l i ty  ve lcc i ty  s t r u c  - 
ture required t o  s a t i s f y  t h e  experimental e f fec t ive  c o l l i s i o n  frequency data .  In  
addi t ion,  various experimental checks (outlined i n  Section 3) were made t o  insure t h a t  
t h e  plasma diagnostic systems were r e l i a b l e .  Therefore, it i s  f e l t  t h a t  the  quant i ta-  
t i v e  and q u a l i t a t i v e  behavior of t h e  experimentally determined e f f e c t i v e  c o l l i s i o n  
frequency data  and the i n t e r p r e t a t i o n  of t h i s  data  resu l t ing  i n  t h e  c o l l i s i o n  prob- 
a b i l i t y  of Fig.  8 a r e  cor rec t .  
able  systematic experimental e r r o r  may result  i n  an a l t e r a t i o n  i n  t h e  slope but not 
t h e  magnitude of the e f f e c t i v e  c o l l i s i o n  frequency. If t h i s  were t h e  case, the ab- 
so lu te  magnitude of & 
-1-if.y st.ructure of t h e  c o l l i s i o n  probabi l i ty  as determined from the  i n t e g r a l  

i n  v,,: 
reso lu t ion  of the  technique begins t o  fade. 
p o s s i b i l i t y ,  a var ia t ion  of approximately 25 t o  50 per cent i n  the slope of the  ef-  
f e c t i v e  c o l l i s i o n  frequency data of F i g .  6, equivalent t o  a var ia t ion  of about 15 t o  
20 per cent  i n  t h e  experimentally determined magnitude of veTf , has been taken i n t o  
account when establ ishing the envelope of uncertainty f o r  t h e  c o l l i s i o n  probabi l i ty  
v e l o c i t y  s t ruc ture  (dashed l i n e s  i n  Fig. 8). Such a v a r i a t i o n  i s  considered reason- 
ab le  i n  view of t h e  known l i m i t s  of accuracy of t h e  experimental techniques. 

Numerical procedures have been used t o  e s t a b l i s h  the  degree of uncertainty 

However, the p o s s i b i l i t y  always e x i s t s  that an undetect- 

would not be s ign i f icant ly  a f fec ted .  However, the  exact 

ana lys i s  has been found t o  be qui te  sens i t ive  GCO L,GD Lyp %------ -.*-.--I f C o + i T . r a  ~ r n - p i ~ f , i  on 
, p a r t i c u l a r l y  at the  extremes of the  ve loc i ty  range of i n t e r e s t  where t h e  

Therefore, i n  consideration of such a 

.A family of c o l l i s i o n  probabi l i ty  curves which forms t h i s  envelope has been 
determined from an analysis  of t r i a l  functions f o r  Qea(v). 
when averaged over a l l  e lec t ron  v e l o c i t i e s  y i e l d s  a normalized e f f e c t i v e  c o l l i s i o n  
frequency having the  quant i ta t ive  and general  q u a l i t a t i v e  behavior of the  ve,f data  
of Fig.  6, subject  t o  the p o s s i b i l i t y  of experimental e r r o r  as described i n  t h e  pre- 
vious paragraph. A l l  the  functions defining the envelope have t h e  same q u a l i t a t i v e  
behavior as the c o l l i s i o n  probabi l i ty  curve yielding the b e s t  f i t  t o  the experimental 
d a t a  of t h i s  invest igat ion.  However, it i s  apparent from the f i g u r e  t h a t  t h e  t o t a l  
increment of uncertainty (Ap,) i n  the c o l l i s i o n  probabi l i ty  magnitude as defined by 
t h e  envelope can be qui te  large,  par t icu lar ly  a t  the  extremes of t h e  ve loc i ty  range 
of s e n s i t i v i t y .  Th i s  should not be interpreted as meaning tha t  any c o l l i s i o n  probabil  
i t y  curve f a l l i n g  within t h e  envelope will, when averaged, s a t i s f y  t h e  experimental 
d a t a  of t h i s  invest igat ion.  For example, an increase i n  the  magnitude of the  c o l l i -  
s i o n  probabi l i ty  i n  t h e  lower veloci ty  range of s e n s i t i v i t y  (0.4 t o  0 . 5 6 V )  must be 
accompanied by an appropriate decrease at  higher v e l o c i t i e s  such as t o  y i e l d  t h e  same 

Each member of t h i s  family 

* 
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magnitude and approximately t h e  same slope as t h e  veG 
over the  e lec t ron  veloci ty  d is t r ibu t ion .  It should be noted t h a t  the  c o l l i s i o n  prob- 
a b i l i t y  of F ig .  8 i s  not experimental data but ra ther  i s  based on the  i n t e r p r e t a t i o n  
of experimental data.  The range of uncertainty i n  the precise veloci ty  s t ruc ture  of 
the c o l l i s i o n  probabi l i ty ,  as determined from t h e  analysis  described above, i s  a 
reasonable indicat ion of the  possible var ia t ions associated w i t h  t h i s  in te rpre ta t ion  
and a l s o  ind ica tes  the  importance of consistent and r e a l i s t i c  i n t e r p r e t a t i o n  of 
"average" or "effect ive" c o l l i s i o n  probabili ty data  determined from experimental 
measurements of over-al l  c o l l i s i o n a l  e f f e c t s  i n  plasmas. 

da ta  of Fig. 6 when averaged 

6. Discussion of Results 

The necessi ty  of including electron-ion e f f e c t s  i n  t h e  analysis  of cesium 
plasmas i n  the  ranges of e lec t ron  temperature and degrees of ionizat ion of p r a c t i c a l  
i n t e r e s t ,  and t h e  importance of proper averaging of the electron-cesium heavy p a r t i c l e  
c o l l i s i o n  p r o b a b i l i t i e s  over e lec t ron  ve loc i t ies  have prompted a re-evaluation of t h e  
avai lable  average cesium c o l l i s i o n  probabi l i ty  data  reported i n  t h e  l i t e r a t u r e .  O f  
the  ava i lab le  cesium c o l l i s i o n  probabili ty data  (Fig. l), only i n  Refs. 2 and 3 has an 
attempt been made t o  determine t h e  actual  ve loc i ty  dependent c o l l i s i o n  probabi l i ty  
from an i n t e g r a l  analysis .  
r i e t y  of plasma t ranspor t  propert ies ,  inferred an average c o l l i s i o n  probabi l i ty  from 
an e f f e c t i v e  c o l l i s i o n a l  term defined t o  represent the  over-al l  e f f e c t  of c o l l i s i o n s  
on the p a r t i c u l a r  t ranspor t  property under invest igat ion.  
probabi l i ty  was then p lo t ted  as a function of most probable o r  average e lec t ron  ve- 
--1-- l --'+-- " ; r h + n - i n p d  - -  f r o m  a measurement of e lec t ron  temperature. I n  addi t ion t o  normal 
experimental e r r o r ,  t h e  c o l l i s i o n  probabi l i ty  determinea i n  T;IIIS I I I U ~ L I ~ ~  L u u u d L u ~  _ _  
the  uncer ta in t ies  associated with differences i n  the averaging of the cross  sect ion 
over e l e c t r o n  v e l o c i t i e s  which i s  complicated by the influence of e lec t ron  ion i n t e r -  
act ions.  
c o l l i s i o n s  was made, and it was assumed t h a t  electron-atom and electron-ion e f f e c t s  
could be t r e a t e d  separately and added l ike r e s i s t i v i t i e s .  
i s  not sa t i s fy ing  physically and i n  fac t  can r e s u l t  i n  la rge  e r r o r s  i n  the  in te rpre-  
t a t i o n  of t h e  ve loc i ty  s t ruc ture  of the c o l l i s i o n  probabi l i ty  when Qea(v) i s  a strong 
function of e lec t ron  ve loc i ty  and comparable i n  magnitude t o  a€&(v). Consequently, 
the  da ta  of Fig.  1 represents  only the  approximate magnitude of the  c o l l i s i o n  prob- 
a b i l i t y  i n  the e lec t ron  ve loc i ty  range of i n t e r e s t .  
standing of t h e  cesium c o l l i s i o n  probabili ty data  r e s u l t s  i f  t h e  avai lable  da ta  i s  
converted t o  an e f f e c t i v e  c o l l i s i o n  frequency form and p l o t t e d  as a function of e lec-  
t r o n  temperature. This i s  accomplished by converting t h e  ve loc i ty  coordinate of each 
d a t a  point  of Fig. 1 t o  the  e lec t ron  temperature corresponding t o  the most probable 
ve loc i ty  of a Maxwellian d i s t r i b u t i o n ,  
i s  recovered by multiplying each co l l i s ion  probabi l i ty  da ta  point by i t s  correspond- 
ing most probable ve loc i ty  point.  This conversion process r e s u l t s  i n  a presentation 
of t h e  ava i lab le  experimental data  i n  a form more closely associated w i t h  the  manner 
i n  which t h e  measurements were actual ly  made and provides a base f o r  a reasonable 
comparison with t h e  data  of t h i s  invest igat ion.  

References 4 through 11, involving measurement of a va- 

This average c o l l i s i o n  

-7. - -L c.. 

I n  Refs. 5 ,  9, and 10 an  attempt t o  account f o r  t he  e f f e c t  of electron-ion 

However, t h i s  approach 

An improvement i n  the under- 

A normalized e f f e c t i v e  c o l l i s i o n  frequency 

2 - 11 
Figure 9 presents the  available experimental data  i n  e f fec t ive  c o l l i -  

s ion frequency form, t h e  data  of t h i s  invest igat ion,  and t h e  numerically calculated 
normalized e f f e c t i v e  c o l l i s i o n  frequency extrapolated t o  lower and higher e lec t ron  

I -13 



D-920243 -18 . 

Fig.  9 Numerically Calculated Normalized 
Effec t ive  Col l i s ion  Frequency Com- 
pared with Available Data i n  
Effect ive Col l i s ion  Frequency Form 

temperatures. Although t h e  lowest e lectron temperature of t he  current inves t iga t ion  
w a s  approximately 2500°K, t h e  in tegra ted  c o l l i s i o n  probabi l i ty  (e f fec t ive  c o l l i s i o n  
frequency) can be numerically calculated for lower e l ec t ron  temperatures with reason- 

range, e lectron-ion effects begin t o  dominate t h e  c o l l i s i o n a l  processes. The numeri- 
c a l  curves i n  Fig.  9 were obtained using Eq. 10 and t h e  c o l l i s i o n  probabi l i ty  of Fig.  8 
(solid l i n e )  which has been extrapolated smoothly t o  lower and higher e lec t ron  v e l o c i t i e s  
i n  accordance with the  magnitudes establ ished Dy K e I s .  cl a m  3 i l l  LAC G . l  L, :.;.,= 
range and with t h e  magnitude of Brode ' s  data i n  the  1.0 range. Even though t h e  
e l ec t ron  ve loc i ty  d i s t r i b u t i o n  funct ion would be non-Maxwellian for very low degrees 
of ion iza t ion ,  veE has a l s o  been calculated neglecting electron-ion e f f e c t s  
(a x 0 i n  Fig. 9) i n  order  t o  i l l u s t r a t e  t h e  f a c t  t h a t  f o r  a degree of ion iza t ion  of 
approximately electron-ion e f f e c t s  f i r s t  become s ign i f i can t  i n  t h e  2000 t o  5000°K 
range of e l ec t ron  temperatures. Examination of Fig. 9 ind ica tes  t h a t  i n t e rp re t a t ion  
of t he  ava i lab le  cesium c o l l i s i o n  probabi l i ty  information on the  b a s i s  of an e f f e c t i v e  
c o l l i s i o n  frequency formulation including t h e  e f f e c t  of electron-ion c o l l i s i o n s  pro- 
duces a def inable  t r end  i n  t h e  data .  O f  p a r t i c u l a r  s ignif icance i s  t h e  agreement 
between tk numerical and experimental data es tab l i sh ing  the  magnitude of t h e  minimum 
of Ve& 
mum i n  t h e  c o l l i s i o n  probabi l i ty  veloci ty  s t ruc tu re ,  i . e .  Fig.  8. When in t e rp re t ing  
Fig.  9 ,  it should be noted t h a t  the  information presented i n  Refs. 2 - 11 does not 
permit ca lcu la t ion  of veTf i n  exac t ly  the same form f o r  each case and no attempt has 
been made t o  replace electron-ion e f f ec t s  t h a t  have been removed.5, 9 ,  lo 
i n  comparing t h e  numerically calculated curves with the  ava i lab le  data, emphasis 
should be placed on the  t rend  establ ished by t h e  da ta  taken as a group r a the r  than 
on ind iv idua l  values of veff The general  agreement t h a t  r e s u l t s  when the  ava i lab le  
d a t a  are analyzed on a more common basis  and compared with t h e  numerically ca lcu la ted  
e f f ec t ive  c o l l i s i o n  frequency lends support t o  t he  conclusion t h a t  t h e  c o l l i s i o n  prob- 
a b i l i t y  has a minimum i n  t h e  0.5 t o  0 . 8 6 ~  range of e lec t ron  v e l o c i t i e s  as indicated 
i n  Fig.  8. 

ab le  safe ty ,  s ince at  lower temperatures and degrees of ion iza t ion  i n  the  t o  10 -3 

i n  t h e  1000 t o  20000K range, The minimum value of v,$f i s  determinedby t h e  mini- 

Theref ore, 

i t  . 

Although even approximate theo re t i ca l  ca lcu la t ions  leading t o  t h e  e lec t ron-  
cesium atm cross  sec t ion  a re  qui te  complicated, current i n t e r e s t  has been stimulated 
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by the  p r a c t i c a l  appl icat ion of ionized cesium vapor i n  devices, such as t h e  thermionic 
converter. It i s  of i n t e r e s t  t o  analyze some of t h e  more recent t h e o r e t i c a l  r e s u l t s  i n  
l i g h t  of the  conclusions drawn from the  experimental and a n a l y t i c a l  work of t h i s  pro- 
gram. The t o t a l  and momentum transfer electron-cesium atom cross  sect ions were calcu- 
l a t e d  t h e o r e t i c a l l y  i n  R e f .  20. The resul tant  sca t te r ing  curves f o r  both t h e  t o t a l  
and the  momentum t r a n s f e r  cases a r e  similar w i t h  the  t h e o r e t i c a l  curves exhibi t ing a 
resonance behavior i n  the energy range from 0 t o  1.0 e V .  A more recent ca lcu la t ion  
of both the  t o t a l  and momentum t r a n s f e r  e l a s t i c  s c a t t e r i n g  cross  sect ions has resu l ted  
i n  an extremely sharp resonance i n  both cross sect ions at about O . 5 f i .  O f  i n t e r e s t  
i s  t h e  f a c t  t h a t  the  t o t a l  and momentum t r a n s f e r  c o l l i s i o n  p r o b a b i l i t i e s  of R e f .  21  
d i f f e r  by as much as 100 per cent i n  the 0.7 t o  1.0 f i  range, which would ind ica te  a 
s igni f icant  angular dependence of the  d i f f e r e n t i a l  sca t te r ing  cross  sect ion.  The 
t h e o r e t i c a l  calculat ions of Refs. 20 and 2 1  are presented i n  Fig. 10 along with the  
c o l l i s i o n  probabi l i ty  determined from the experimental and numerical data  of t h i s  
program. It i s  apparent both from t h e  differences i n  t h e  various t h e o r e t i c a l  curves 

21 

mz-  --. -- m n n r a t . i O R I  1v Calculated Col l i s ion  
Probabi l i ty  Compared with the  Col- 
l i s i o n  Probabi l i ty  Data of t h i s  
Invest igat ion 

and from examples t r e a t e d  i n  the  or iginal  references t h a t  t h e  calculated c o l l i s i o n  
probabi l i ty  i s  extremely sens i t ive  t o  the t h e o r e t i c a l  form used t o  represent polar- 
i z a t i o n  e f f e c t s .  However, the general  form of t h e  t h e o r e t i c a l  sca t te r ing  curves i s  
t h e  same and i s  i n  q u a l i t a t i v e  and semiquantitative agreement with t h e  c o l l i s i o n  
p r o b a b i l i t y  data  determined i n  t h i s  invest igat ion.  O f  p a r t i c u l a r  s ignif icance i s  
t h e  t h e o r e t i c a l  predict ion of a resonance i n  the  0.5 t o  l . O m r a n g e  coupled with a 
sharp drop t o  a minimum i n  the  co l l i s ion  probabi l i ty  i n  the  0.3 t o  O . 7 m  range of 
e l e c t r o n  v e l o c i t i e s .  I n  Ref. 21, which i s  the  most recent work and presumably an 
improvement over previous calculat ions,  an average value of the  p o l a r i z a b i l i t y  was 
used which corresponds approximately t o  t h e  average of the  experimental values.  
However, numerical experimentation i n  Ref. 21  ind ica tes  considerable s e n s i t i v i t y  
t o  t h e  exact choice of t h e  polar izabi l i ty .  Although t h e  general  shape of the 
t h e o r e t i c a l  curve remains t h e  same for  s l i g h t  var ia t ions  i n  the  polar izabi l i ty ,  
t h e  loca t ion  of t h e  resonance can be sh i f ted  along the  ve loc i ty  sca le .  Since the 
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range of maximum s e n s i t i v i t y  of t h i s  invest igat ion and t h e  da ta  of Refs. 4 through 11 
corresponds t o  t h e  ve loc i ty  range where theory predic t s  a sharp d ip  i n  t h e  c o l l i s i o n  
probabi l i ty ,  t he  ana lys i s  of t he  numerical and experimental da ta  presented here in -  
d ica tes  t h a t  t he  ac tua l  loca t ion  of t he  co l l i s ion  probabi l i ty  minimum i s  i n  t h e  0.5 
t o  0 . 8 m  range of e lec t ron  v e l o c i t i e s  with the indicated resonance occurring i n  
the  v i c i n i t y  of l.Om. 

7. Conclusions 

An ana lys is  has been made of the e f f ec t ive  electron-cesium heavy p a r t i c l e  
momentum t r a n s f e r  c o l l i s i o n  frequency which was determined from measurements of the  
plasma proper t ies  i n  a cesium a r c  discharge. The e f f e c t i v e  c o l l i s i o n  frequency has 
been found t o  be s t rongly dependent on e lec t ron  temperature i n  t h e  2000 t o  5000°K 
range and t o  be s ign i f i can t ly  dependent on plasma degree of ion iza t ion  f o r  values of 
t h i s  parameter g rea t e r  than 
must be considered i n  the  ana lys i s  of cesium plasmas i n  t h e  ranges of e lec t ron  tempera- 
t u r e  and degrees of ion iza t ion  of p rac t i ca l  s c i e n t i f i c  and engineering i n t e r e s t .  

Consequently, t h e  e f f e c t  of e lectron-ion c o l l i s i o n s  

A numerical ana lys i s  of t h e  in t eg ra l  equation describing t h e  e f f ec t ive  
c o l l i s i o n  frequency has been conducted i n  order t o  determine t h e  s e n s i t i v i t y  of t h e  
c o l l i s i o n  frequency t o  va r i a t ions  i n  the  ve loc i ty  dependence of t h e  electron-cesium 
atom momentum t r a n s f e r  c o l l i s i o n  probabi l i ty .  
v a r i e t y  of t r ia l  funct ions f o r  t h e  co l l i s ion  probabi l i ty  has ind ica ted  t h a t  t h e  re- 
slllt.ant. e f f e c t i v e  c o l l i s i o n  frequency i s  reasonably sens i t i ve  t o  changes i n  t h e  ve- 
l o c i t y  s t ruc tu re  of t h e  c o l l i s i o n  proDaulllby u v c A  Z:c V- - y r i m e n t a l  va r i ab le s  
covered i n  t h i s  inves t iga t ion ,  
eral  quan t i t a t ive  and q u a l i t a t i v e  behavior of t h i s  ve loc i ty  dependence over an ap- 
preciable  range of e lec t ron  v e l o c i t i e s .  
have a minimum value of approximately 100 t o  300 c o l l i s i o n s  per cm mm Hg i n  t h e  0.5 
t o  0.8& range of e l ec t ron  ve loc i t i e s ,  r i s i n g  t o  a value about an order of magni- 
tude l a r g e r  i n  the  0.75 t o  1 . O m  range. 

Numerical experimentation with a wide 

t Therefore, it has been possible  t o  determine the gen- 

The c o l l i s i o n  probabi l i ty  has been found t o  

Comparison of t he  e f f e c t i v e  electron-cesium heavy p a r t i c l e  c o l l i s i o n  f r e -  
quency determined from t h i s  invest igat ion with t h e  ava i lab le  average c o l l i s i o n  prob- 
a b i l i t y  da t a  in te rpre ted  on the  b a s i s  of  an e f f ec t ive  c o l l i s i o n  frequency formulation 
including e lec t ron- ion  in te rac t ions ,  produces a c l e a r l y  def inable  t rend  i n  the  da ta  
over a reasonably broad range of e lectron temperature and degree of ionizat ion.  A 
comparison h a s . a l s o  been made between some of t h e  more recent  t h e o r e t i c a l  ca lcu la t ions  
of t h e  electron-cesium atom c o l l i s i o n  probabi l i ty  and t h e  experimental and a n a l y t i c a l  
r e s u l t s  of t h i s  program. 
re t ical  form used t o  represent atomic polar iza t ion  e f f e c t s ,  t he  resonance behavior of 
t he  pred ic ted  sca t te r ing  curves i s  i n  quant i ta t ive  and q u a l i t a t i v e  agreement with t h e  
c o l l i s i o n  probabi l i ty  ve loc i ty  dependence determined i n  t h i s  invest igat ion.  

Although such ca lcu la t ions  a re  very sens i t i ve  t o  t he  theo- 
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